Chapter 4 Exercise 4A

Q. 1. (i)
$$\overrightarrow{v_{BA}} = 30\overrightarrow{i} - 25\overrightarrow{i}$$

= $5\overrightarrow{i}$ m/s

(ii)
$$\frac{1,000}{5} = 200 \text{ s}$$

Q. 2. (i)
$$\overrightarrow{v_A} = 4\overrightarrow{i}$$

 $\overrightarrow{v_B} = 7\overrightarrow{i}$
 $\overrightarrow{v_{BA}} = \overrightarrow{v_B} - \overrightarrow{v_A} = 7\overrightarrow{i} - 4\overrightarrow{i} = 3\overrightarrow{i} \text{ m/s}$

(ii) Relative distance = relative speed
$$\times$$
 time = 3 \times 60 = 180 m

(iii) Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{600}{3}$
= 200 s

Q. 3. (i)
$$\overrightarrow{v}_c = 10\overrightarrow{i}$$
 m/s

(ii)
$$\overrightarrow{v_L} = -15\overrightarrow{i} \text{ m/s}$$

$$\therefore \overrightarrow{v_{CL}} = 10\overrightarrow{i} - (-15\overrightarrow{i}) = 25\overrightarrow{i} \text{ m/s}$$

(iii)
$$\frac{500}{25} = 20 \text{ s}$$

Q. 4. (i)
$$\overrightarrow{v_g} = 1.2\overrightarrow{i}$$
 m/s

(ii)
$$\overrightarrow{v_b} = -1.3\overrightarrow{i} \text{ m/s}$$

$$\overrightarrow{v_{gb}} = \overrightarrow{v_g} - \overrightarrow{v_b}$$

$$= 1.2\overrightarrow{i} - (-1.3\overrightarrow{i})$$

$$= 1.2\overrightarrow{i} + 1.3\overrightarrow{i} = 2.5\overrightarrow{i} \text{ m/s}$$

(iii) Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{250}{2.5}$
= 100 s

Q. 5. (i)
$$\overrightarrow{v_{pq}} = \overrightarrow{v_p} - \overrightarrow{v_q}$$

$$= (5\overrightarrow{i} + 2\overrightarrow{j}) - (2\overrightarrow{i} - 2\overrightarrow{j})$$

$$= 3\overrightarrow{i} + 4\overrightarrow{j} \text{ km/h}$$

(ii)
$$|\overrightarrow{v_{pq}}| = \sqrt{3^2 + 4^2}$$

= 5 km/h

(iii)
$$\frac{20}{5} = 4$$
 hours

Q. 6. (i)
$$\overrightarrow{v_{AB}} = (4\overrightarrow{i} - 3\overrightarrow{j}) - (6\overrightarrow{i} - \overrightarrow{j})$$

$$= -2\overrightarrow{i} - 2\overrightarrow{j} \text{ m/s}$$

$$|\overrightarrow{v_{AB}}| = \sqrt{4 + 4} = \sqrt{8} \text{ m/s}$$
Direction = SW

(ii)
$$\overrightarrow{v_{CB}} = 8\overrightarrow{i} - (6\overrightarrow{i} - \overrightarrow{j})$$

 $= 2\overrightarrow{i} + \overrightarrow{j} \text{ m/s}$
 $|\overrightarrow{v_{CB}}| = \sqrt{4 + 1} = \sqrt{5} \text{ m/s}$
 $\tan \theta = \frac{1}{2} \Rightarrow \theta = 26^{\circ} 34'$
Direction: E 26° 34'N

Q. 7.
$$\overrightarrow{r_{BA}} = (-3\vec{i} + 6\vec{j}) - (4\vec{i} + 2\vec{j}) = -7\vec{i} + 4\vec{j}$$

 $\overrightarrow{r_{CA}} = (-4\vec{i} + 2\vec{j}) - (4\vec{i} + 2\vec{j}) = -8\vec{i}$
 $|\overrightarrow{r_{BA}}| = \sqrt{49 + 16} = \sqrt{65}$
 $|\overrightarrow{r_{CA}}| = \sqrt{64} = 8$
Since $|\overrightarrow{r_{BA}}| > |\overrightarrow{r_{CA}}|$, B is farther

Q. 8. (i)
$$\overrightarrow{r_{QP}} = (-4\vec{i} + \vec{j}) - (\vec{i} - 2\vec{j})$$

= $-5\vec{i} + 3\vec{j}$

(ii) Let
$$\overrightarrow{r_T} = a\overrightarrow{i} + b\overrightarrow{j}$$

$$\overrightarrow{r_{TS}} = \overrightarrow{r_{QP}}$$

$$(a+3)\overrightarrow{i} + (b-5)\overrightarrow{j} = -5\overrightarrow{i} + 3\overrightarrow{j}$$

$$a+3=-5 \text{ and } b-5=3$$

$$a=-8 \text{ and } b=8$$

$$\therefore \overrightarrow{r_T} = -8\overrightarrow{i} + 8\overrightarrow{j}$$

Q. 9.
$$\overrightarrow{v_{CT}} = \overrightarrow{v_C} - \overrightarrow{v_T} = 10\overrightarrow{i} + 6\overrightarrow{j} - 30\overrightarrow{j}$$

 $= 10\overrightarrow{i} - 24\overrightarrow{j}$
 $|\overrightarrow{v_{CT}}| = \sqrt{100 + 576} = 26 \text{ m/s}$
 $\tan \theta = \frac{24}{10} = 2.4 \Rightarrow \theta = 67^{\circ} 23'$
Direction: E 67° 23'S

Q. 10.
$$\overrightarrow{v_{QP}} = (-4\vec{i} + 2\vec{j}) - (6\vec{i} + 2\vec{j}) = 10\vec{i} \text{ m/s}$$

Time $= \frac{100}{10} = 10 \text{ s}$

Q. 11. (i)
$$\overrightarrow{v_A} = 4\overrightarrow{i} + 3\overrightarrow{j}$$

$$\overrightarrow{v_B} = -\overrightarrow{i} + 3\overrightarrow{j}$$

$$\overrightarrow{v_{BA}} = \overrightarrow{v_B} - \overrightarrow{v_A} = -\overrightarrow{i} + 3\overrightarrow{j} - (4\overrightarrow{i} + 3\overrightarrow{j})$$

$$= -5\overrightarrow{i} \text{ km/h}$$

(ii) The position of *B* relative to *A* is
$$\overrightarrow{r_{BA}} = 40\overrightarrow{i}$$
 km $\Rightarrow \overrightarrow{v_{BA}} = -\frac{1}{8}(\overrightarrow{r_{BA}})$ Since $\overrightarrow{v_{BA}} = -k(\overrightarrow{r_{BA}})$ where *k* is a

Since $\overrightarrow{v_{BA}} = -k(\overrightarrow{r_{BA}})$ where k is a positive constant, they must be on a collision course.

- (iii) The time of the collision is given by $t = \frac{\text{relative distance}}{\text{relative speed}}$ $= \frac{40}{5}$ = 8 hours later
- Q. 12. (i) $\overrightarrow{v_A} = 12\overrightarrow{i} + 4\overrightarrow{j}$ $\overrightarrow{v_B} = 4\overrightarrow{j}$ $\overrightarrow{v_{BA}} = \overrightarrow{v_B} \overrightarrow{v_A} = 4\overrightarrow{j} (12\overrightarrow{i} + 4\overrightarrow{j})$ $= -12\overrightarrow{i}$
 - (ii) The position of B relative to A is $\overrightarrow{r_{BA}} = 60\overrightarrow{i}$ km $\Rightarrow \overrightarrow{v_{BA}} = -\frac{1}{5}(\overrightarrow{r_{BA}})$ Since $\overrightarrow{v_{BA}} = -k(\overrightarrow{r_{BA}})$ where k is a positive constant, they must be on a collision course.
 - (iii) The time of the collision is given by $t = \frac{\text{relative distance}}{\text{relative speed}}$ $= \frac{60}{12} = 5 \text{ hours later}$
- **Q. 13.** (a) $\sqrt{t^2 + 9} = 5 \Rightarrow t = 4$
 - (b) (i) $\overrightarrow{v_k}$ k 60 $\overrightarrow{v_m} = -2\overrightarrow{i} + 3\overrightarrow{j}$ $\overrightarrow{v_k} = t\overrightarrow{i} + 3\overrightarrow{j}$ But $|t\overrightarrow{i} + 3\overrightarrow{j}| = 5$ t = 4, as before $\therefore \overrightarrow{v_k} = 4\overrightarrow{i} + 3\overrightarrow{j}$ (ii) $\overrightarrow{v_{mk}} = (-2\overrightarrow{i} + 3\overrightarrow{j}) (4\overrightarrow{i} + 3\overrightarrow{j})$ $= -6\overrightarrow{i}$ Time $= \frac{\text{Distance}}{\text{Speed}}$ $= \frac{60}{6} = 10 \text{ hours}$
- Q. 14. (i) $\overrightarrow{V_P}$ 3.4 km $\overrightarrow{V_Q}$ $\overrightarrow{V_Q}$ $\overrightarrow{V_Q}$ $\overrightarrow{V_Q} = 5\overrightarrow{i} + 5\overrightarrow{j}$ m/s (ii) $\overrightarrow{V_Q} = K\overrightarrow{i} + 5\overrightarrow{j}$ But $|\overrightarrow{Ki} + 5\overrightarrow{j}| = 13$

 $\Rightarrow K = -12$ (it must be negative so that Q approaches P)

Q. 15. (i) $\vec{v_K} = 12\vec{i} + 6\vec{j}$

For collision to occur, \vec{j} -velocities must match. Therefore, the minimum velocity at which H must travel in order for a collision to occur is $6\vec{j}$ m/s i.e. a minimum speed of 6 m/s due north.

(ii) Let $\overrightarrow{v_H} = a\overrightarrow{i} + 6\overrightarrow{j}$ m/s, $a \in R$ $\sqrt{a^2 + 6^2} = 10$... we are told that the speed of H is 10 m/s

$$\Rightarrow a^2 + 36 = 100$$
$$\Rightarrow a^2 = 64 \Rightarrow a = \pm 8$$

⇒ Two possibilities for $\overrightarrow{v_H}$ are $\overrightarrow{v_H} = -8\overrightarrow{i} + 6\overrightarrow{j}$ and $\overrightarrow{v_H} = 8\overrightarrow{i} + 6\overrightarrow{j}$

$$\tan \theta = \tan \alpha = \frac{6}{8} = \frac{3}{4}$$

- $\Rightarrow \theta = \alpha = 36.87^{\circ}$
- \Rightarrow Possible directions for *H* are 36.87° N of W and 36.87° N of E.

Using
$$\overrightarrow{v_H} = -8\overrightarrow{i} + 6\overrightarrow{j}$$
 gives $\overrightarrow{v_{KH}} = \overrightarrow{v_K} - \overrightarrow{v_H} = 20\overrightarrow{i}$ m/s

Time of Interception =
$$\frac{\text{relative distance}}{\text{relative speed}}$$
$$= \frac{3,000}{20}$$
$$= 150 \text{ s}$$

Using
$$\overrightarrow{v_H} = 8\overrightarrow{i} + 6\overrightarrow{j}$$
 gives
 $\overrightarrow{v_{KH}} = \overrightarrow{v_K} - \overrightarrow{v_H} = 4\overrightarrow{i}$ m/s
Time of Interception = $\frac{\text{relative distance}}{\text{relative speed}}$
= $\frac{3,000}{4}$
= 750 s

Q. 16. (i)
$$\vec{v_Y} = 10\vec{j} \text{ km/h}$$

$$\overrightarrow{v_{\chi}} = \overrightarrow{10j} \ \overrightarrow{kn/n}$$

$$\overrightarrow{v_{\chi}} = \overrightarrow{ai} + 10\overrightarrow{j}, a \in R,$$

where
$$\sqrt{a^2 + 10^2} = 20$$

$$\Rightarrow a^2 + 100 = 400$$

$$\Rightarrow a = \sqrt{300} = 10\sqrt{3}$$

$$\Rightarrow \overrightarrow{v_{\chi}} = 10\sqrt{3}\overrightarrow{i} + 10\overrightarrow{j}$$

$$\tan \theta = \frac{10}{10\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = \tan^{-1} \frac{1}{\sqrt{3}} = 30^{\circ}$$

⇒ Captain must steer in a direction 30° N of E.

(ii)
$$\overrightarrow{v_{\chi\gamma}} = \overrightarrow{v_{\chi}} - \overrightarrow{v_{\gamma}}$$

= $10\sqrt{3}\overrightarrow{i} + 10\overrightarrow{j} - 10\overrightarrow{j} = 10\sqrt{3}\overrightarrow{i}$

Time to interception = $\frac{\text{relative distance}}{\text{relative speed}}$

$$=\frac{40}{10\sqrt{3}}$$

 ≈ 2.309 hours

 \approx 2 hours 19 mins

Q. 17. (i)
$$\overrightarrow{r_{BA}} = \overrightarrow{r_B} - \overrightarrow{r_A}$$

$$= 37\overrightarrow{i} + 25\overrightarrow{j} - (2\overrightarrow{i} - 3\overrightarrow{j})$$

$$= 35\overrightarrow{i} + 28\overrightarrow{j}$$

$$\overrightarrow{v_{BA}} = \overrightarrow{v_B} - \overrightarrow{v_A}$$

$$= -2\overrightarrow{i} - 3\overrightarrow{j} - (3\overrightarrow{i} + \overrightarrow{j})$$

$$= -5\overrightarrow{i} - 4\overrightarrow{j}$$

$$\Rightarrow \overrightarrow{v_{BA}} = -\frac{1}{7}(\overrightarrow{r_{BA}})$$

Since $\overrightarrow{v_{BA}} = -k(\overrightarrow{r_{BA}})$ where k is a positive constant, they must be on a collision course.

(ii) Time to collision =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{\sqrt{35^2 + 28^2}}{\sqrt{(-5)^2 + (-4)^2}}$

$$=\frac{7\sqrt{41}}{\sqrt{41}} = 7 \text{ hours}$$

⇒ Collision occurs at 17.00 hours.

Q. 18. (i)
$$\overrightarrow{r_{A}} = -8\overrightarrow{i} + 4\overrightarrow{j}$$

 $\overrightarrow{r_{B}} = 24\overrightarrow{i} - 12\overrightarrow{j}$
 $\overrightarrow{r_{BA}} = \overrightarrow{r_{B}} - \overrightarrow{r_{A}}$
 $= 24\overrightarrow{i} - 12\overrightarrow{j} - (-8\overrightarrow{i} + 4\overrightarrow{j})$
 $= 32\overrightarrow{i} - 16\overrightarrow{j}$
 $\overrightarrow{v_{A}} = 3\overrightarrow{i} + \overrightarrow{j}$
 $\overrightarrow{v_{B}} = \overrightarrow{i} + 2\overrightarrow{j}$
 $\overrightarrow{v_{BA}} = \overrightarrow{v_{B}} - \overrightarrow{v_{A}} = \overrightarrow{i} + 2\overrightarrow{j} - (3\overrightarrow{i} + \overrightarrow{j})$
 $= -2\overrightarrow{i} + \overrightarrow{j}$
 $\overrightarrow{v_{BA}} = -\frac{1}{8}(\overrightarrow{r_{BA}})$

Since $\overrightarrow{v_{BA}} = -k(\overrightarrow{r_{BA}})$ where k is a positive constant, they must be on a collision course.

(ii) Time to collision = $\frac{\text{relative distance}}{\text{relative speed}}$

$$=\frac{\sqrt{32^2+(-16)^2}}{\sqrt{(-2)^2+1^2}}$$

$$= \frac{16\sqrt{5}}{\sqrt{5}} = 16 \text{ hours}$$

⇒ Collision will occur at 16.00 hours.

Q. 19. (i)
$$\overrightarrow{r_{\chi}} = 10\overrightarrow{i} - 4\overrightarrow{j}$$

 $\overrightarrow{r_{\gamma}} = 37\overrightarrow{i} + k\overrightarrow{j}$
 $\overrightarrow{r_{\gamma\chi}} = \overrightarrow{r_{\gamma}} - \overrightarrow{r_{\chi}} = 27\overrightarrow{i} + (k+4)\overrightarrow{j}$
 $\overrightarrow{v_{\chi}} = 3\overrightarrow{i} + \overrightarrow{j}$
 $\overrightarrow{v_{\chi}} = -\overrightarrow{j}$
 $\overrightarrow{v_{\gamma\chi}} = \overrightarrow{v_{\gamma}} - \overrightarrow{v_{\chi}} = -3\overrightarrow{i} - 2\overrightarrow{j}$
 $\frac{27}{-3} = \frac{k+4}{-2}$... collision course $\Rightarrow \overrightarrow{v_{\gamma\chi}}$ is a scalar multiple of $\overrightarrow{r_{\gamma\chi}}$

$$\Rightarrow 3k + 12 = 54$$

$$\Rightarrow 3k = 42$$

$$\Rightarrow k = 14$$

(ii)
$$\overrightarrow{r_{YX}} = 27\overrightarrow{i} + 18\overrightarrow{j}$$

$$\overrightarrow{v_{yx}} = -3\overrightarrow{i} - 2\overrightarrow{j}$$

Time to collision = $\frac{\text{relative distance}}{\text{relative distance}}$ relative speed

$$= \frac{\sqrt{27^2 + 18^2}}{\sqrt{(-3)^2 + (-2)^2}}$$
$$= \frac{9\sqrt{13}}{\sqrt{13}}$$

Collision occurs at 10.00 hours.

Q. 20. (i)
$$\overrightarrow{r_p} = -11\overrightarrow{i} + \overrightarrow{j}$$

$$\overrightarrow{r_Q} = 4\overrightarrow{i} - 13\overrightarrow{j}$$

$$\overrightarrow{r_{QP}} = \overrightarrow{r_Q} - \overrightarrow{r_P} = 15\overrightarrow{i} - 14\overrightarrow{j}$$

$$\overrightarrow{v_P} = 3\overrightarrow{i}$$

$$\overrightarrow{v_Q} = x\overrightarrow{j}$$

$$\overrightarrow{v_{QP}} = \overrightarrow{v_Q} - \overrightarrow{v_P} = -3\overrightarrow{i} + x\overrightarrow{j}$$

$$\frac{15}{-3} = \frac{-14}{x} \quad ... \text{collision course}$$

$$\Rightarrow \overrightarrow{v_{QP}} \text{ is a scalar}$$

$$\text{multiple of } \overrightarrow{r_{QP}}$$

$$\Rightarrow 15x = 42$$
$$\Rightarrow x = \frac{14}{5}$$

(ii)
$$\overrightarrow{r_{QP}} = 15\overrightarrow{i} - 14\overrightarrow{j}$$

 $\overrightarrow{v_{QP}} = -3\overrightarrow{i} + \frac{14}{5}\overrightarrow{j}$
Time to collision = $\frac{\text{relative distance}}{\text{relative speed}}$
= $\frac{\sqrt{15^2 + (-14)^2}}{\sqrt{(-3)^2 + \left(\frac{14}{5}\right)^2}}$
= 5 bours

⇒ Collision occurs at 17.00 hours.

Exercise 4B

Q. 1. $K \xrightarrow{20} T$

$$\overrightarrow{v_{KT}} = (\overrightarrow{i} + 2\overrightarrow{j}) - (-2\overrightarrow{i} - 2\overrightarrow{j})$$
$$= 3\overrightarrow{i} + 4\overrightarrow{i} \text{ m/s}$$

$$\tan \theta = \frac{4}{3}$$

$$\Rightarrow \sin \theta = \frac{4}{5}$$

$$d = 20 \sin \theta$$

$$=20\left(\frac{4}{5}\right)=16 \text{ m}$$

Q. 2. (i) $\overrightarrow{v_{PQ}} = (-8\overrightarrow{i} + 12\overrightarrow{j}) - (7\overrightarrow{i} + 4\overrightarrow{j})$ = $-15\overrightarrow{i} + 8\overrightarrow{i}$

(iii)
$$\tan \theta = \frac{8}{15}$$

$$\Rightarrow \sin \theta = \frac{8}{17}$$

$$d = 119 \sin \theta$$

$$= 119 \left(\frac{8}{17} \right) = 56 \text{ units}$$

Q. 3.

(i)
$$\overrightarrow{v_F} = 2\overrightarrow{i} + 5\overrightarrow{j}$$

 $\overrightarrow{v_T} = -4\overrightarrow{i} - 3\overrightarrow{j}$
 $\overrightarrow{v_{FT}} = \overrightarrow{v_F} - \overrightarrow{v_T}$
 $= 2\overrightarrow{i} + 5\overrightarrow{j} + 4\overrightarrow{i} + 3\overrightarrow{j}$
 $= 6\overrightarrow{i} + 8\overrightarrow{i}$

(ii)
$$\tan \theta = \frac{8}{6}$$

 $= \frac{4}{3}$
 $\Rightarrow \sin \theta = \frac{4}{5}$
But, $\sin \theta = \frac{d}{5,000}$
 $\Rightarrow \frac{d}{5,000} = \frac{4}{5}$
 $\Rightarrow d = 4000 \text{ m}$... shortest distance between P and Q in subsequent motion.

Q. 4.

(i)
$$\overrightarrow{v_T} = 10 \cos 30^{\circ i} - 10 \sin 30^{\circ j}$$

$$= 10 \left(\frac{\sqrt{3}}{2} \right) \overrightarrow{i} - 10 \left(\frac{1}{2} \right) \overrightarrow{j}$$

$$= 5\sqrt{3} \overrightarrow{i} - 5\overrightarrow{j}$$

$$\vec{v_Q} = -20 \cos 45^{\circ} \vec{i} + 20 \sin 45^{\circ} \vec{j}$$

$$= -20 \left| \frac{1}{\sqrt{2}} \right| \vec{i} + 20 \left| \frac{1}{\sqrt{2}} \right| \vec{j}$$

$$= -10\sqrt{2} \vec{i} + 10\sqrt{2} \vec{j}$$

$$\vec{v_{TQ}} = \vec{v_T} - \vec{v_Q}$$

$$= (5\sqrt{3} + 10\sqrt{2}) \vec{i} - (5 + 10\sqrt{2}) \vec{j}$$

$$= 22.8 \vec{i} - 19.14 \vec{j} \text{ km/h}$$

(ii)
$$\left|\overrightarrow{v_{TQ}}\right| = \sqrt{22.8^2 + 19.14^2}$$

 $= 29.77 \text{ m/s}$
 $\tan \theta = \frac{19.14}{22.8}$
 $\Rightarrow \theta = \tan^{-1}\left(\frac{19.14}{22.8}\right)$
 $= 40^\circ$
 $\Rightarrow 40^\circ$ S of E

(iii)
$$\sin 40^\circ = \frac{d}{100}$$

 $\Rightarrow d = 100 \sin 40^\circ$
 $\Rightarrow d = 64.3 \text{ km}$

Q. 5.

(i)
$$\overrightarrow{v_X} = 7\overrightarrow{i}$$

 $\overrightarrow{v_Y} = 24\overrightarrow{j}$
 $\overrightarrow{v_{XY}} = \overrightarrow{v_X} - \overrightarrow{v_Y}$
 $= 7\overrightarrow{i} - 24\overrightarrow{j} \text{ m/s}$

(ii)
$$\tan \theta = \frac{24}{7}$$

 $\Rightarrow \sin \theta = \frac{24}{25}$
But, $\sin \theta = \frac{d}{100}$
 $\Rightarrow \frac{d}{100} = \frac{24}{25}$
 $\Rightarrow d = 96 \text{ m}$

Q. 6.

(i)
$$\overrightarrow{v_p} = -\overrightarrow{i} + \overrightarrow{j}$$

 $\overrightarrow{v_Q} = 3\overrightarrow{i} - 2\overrightarrow{j}$
 $\overrightarrow{v_{QP}} = \overrightarrow{v_Q} - \overrightarrow{v_p}$
 $= 4\overrightarrow{i} - 3\overrightarrow{j}$

(ii)
$$|\overrightarrow{v_{QP}}| = \sqrt{4^2 + 3^2}$$

 $= 5 \text{ km/h}$
 $\tan \theta = \frac{3}{4}$
 $\Rightarrow \theta = \tan^{-1} \frac{3}{4}$
 $= 36.87^{\circ}$
 $\Rightarrow 36^{\circ}52' \text{ S of E}$

(iii)
$$\tan \theta = \frac{3}{4}$$

$$\Rightarrow \sin \theta = \frac{3}{5}$$
But, $\sin \theta = \frac{d}{350}$

$$\Rightarrow \frac{d}{350} = \frac{3}{5}$$

$$\Rightarrow d = 210 \text{ km}$$

(iv) Insert circle with centre P and radius 290 km. As long as the relative path, $\overrightarrow{v_{QP}}$, is within this circle, P and Q will be able to exchange signals.

From the diagram, they will be within range for a relative distance of 2x.

$$x^{2} + d^{2} = 290^{2}$$
 ... but $d = 210$
 $\Rightarrow x = \sqrt{290^{2} - 210^{2}}$
 $= 200 \text{ km}$

 \Rightarrow *P* and *Q* are within range for a relative distance of 400 km.

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{400}{5}$
= 80 hours

Q. 7.

(i)
$$\overrightarrow{v_A} = 2\overrightarrow{i} - \overrightarrow{j}$$

 $\overrightarrow{v_B} = -2\overrightarrow{i} + 2\overrightarrow{j}$
 $\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B}$
 $= 4\overrightarrow{i} - 3\overrightarrow{j} \text{ m/s}$

(ii)
$$\tan \theta = \frac{3}{4}$$

$$\Rightarrow \sin \theta = \frac{3}{5}$$
But, $\sin \theta = \frac{d}{300}$

$$\Rightarrow \frac{d}{300} = \frac{3}{5}$$

$$\Rightarrow 5d = 900$$

$$\Rightarrow d = 180 \text{ m}$$

(iii) Draw a circle of radius 225 metres with centre at *B*.

A and B will be able to exchange signals as long as the relative path, $\overrightarrow{v_{AB}}$, is inside this circle. This will be for a relative distance of 2x.

$$x^2 + d^2 = 225^2$$
 ... but $d = 180$
 $\Rightarrow x = \sqrt{225^2 - 180^2} = 135$

⇒ A and B will be able to exchange signals for a relative distance of 270 m.

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{270}{\sqrt{4^2 + (-3)^2}}$
= 54 s

Q. 8.

(i)
$$\overrightarrow{v_C} = 6\overrightarrow{i}$$

 $\overrightarrow{v_H} = 8\overrightarrow{j}$
 $\overrightarrow{v_{CH}} = \overrightarrow{v_C} - \overrightarrow{v_H} = 6\overrightarrow{i} - 8\overrightarrow{j}$
 $\tan \theta = \frac{8}{6} = \frac{4}{3} \Rightarrow \sin \theta = \frac{4}{5}$
But, $\sin \theta = \frac{d}{200}$
 $\Rightarrow \frac{d}{200} = \frac{4}{5} \Rightarrow d = 160 \text{ m}$

(ii) Draw a circle with radius 164 m with centre H. As long as the relative path, $\overrightarrow{v_{CH}}$, is inside this circle, the cars will be no more than 164 m apart. This will be for a distance of 2x.

$$x^2 + d^2 = 164^2$$
 ... but $d = 160$
 $\Rightarrow x = \sqrt{164^2 - 160^2} = 36$

⇒ Less than or equal to 164 m apart for a relative distance of 72 m.

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{72}{\sqrt{6^2 + (-8)^2}}$
= 7.2 s

Q. 9.

(i)
$$\overrightarrow{v_A} = 16 \cos 45^{\circ i} + 16 \sin 45^{\circ j}$$

$$= 16 \left| \frac{1}{\sqrt{2}} \right|^{i} + 16 \left| \frac{1}{\sqrt{2}} \right|^{j}$$

$$= 8\sqrt{2} i + 8\sqrt{2} j$$

$$\overrightarrow{v_B} = 20 \cos 45^{\circ} \overrightarrow{i} - 20 \sin 45^{\circ} \overrightarrow{j}$$

$$= 20 \left(\frac{1}{\sqrt{2}} \right) \overrightarrow{i} - 20 \left(\frac{1}{\sqrt{2}} \right) \overrightarrow{j}$$

$$= 10\sqrt{2} \overrightarrow{i} - 10\sqrt{2} \overrightarrow{j}$$

$$\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B}$$

$$= -2\sqrt{2} \overrightarrow{i} + 18\sqrt{2} \overrightarrow{j} \text{ km/h}$$

(ii)
$$\tan \theta = \frac{2\sqrt{2}}{18\sqrt{2}} = \frac{1}{9}$$

$$\Rightarrow \sin \theta = \frac{1}{\sqrt{82}}$$
But, $\sin \theta = \frac{d}{10}$

$$\Rightarrow \frac{d}{10} = \frac{1}{\sqrt{82}}$$

$$\Rightarrow d = \frac{10}{\sqrt{82}} = 1.104 \text{ km} = 1,104 \text{ m}$$

(iii) Draw a circle of radius 2 km with its centre at *B*.

As long as the relative path, $\overrightarrow{v_{AB}}$, is within this circle, the ships will be in visual contact.

This will be for a relative distance of 2x.

$$x^{2} + d^{2} = 2^{2}$$
 ... but $d = \frac{10}{\sqrt{82}}$
 $\Rightarrow x = \sqrt{4 - \frac{100}{82}}$
= 1.6675 km = 1667.5 m

 \Rightarrow Ships will be in visual contact for a relative distance of 2(1.6675) = 3.335 km

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{3.335}{\sqrt{(-2\sqrt{2})^2 + (18\sqrt{2})^2}}$
= 0.13 h = 7 min 49 s

Q. 10.

(i)
$$\overrightarrow{v_B} = 10\overrightarrow{j}$$

 $\overrightarrow{v_A} = 20 \cos 45^{\circ} \overrightarrow{i} + 20 \sin 45^{\circ} \overrightarrow{j}$
 $= 20 \left(\frac{1}{\sqrt{2}} \right) \overrightarrow{i} + 20 \left(\frac{1}{\sqrt{2}} \right) \overrightarrow{j}$
 $= 10\sqrt{2} \overrightarrow{i} + 10\sqrt{2} \overrightarrow{j}$

$$\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B}$$

$$= 10\sqrt{2}\overrightarrow{i} + (10\sqrt{2} - 10)\overrightarrow{j}$$

$$= 14.14\overrightarrow{i} + 4.14\overrightarrow{j}$$

(ii)
$$\tan \theta = \frac{10(\sqrt{2} - 1)}{10\sqrt{2}} = \frac{\sqrt{2} - 1}{\sqrt{2}}$$

 $\Rightarrow \theta = 16.325^{\circ}$
 $\Rightarrow \sin \theta = 0.281$
But, $\sin \theta = \frac{d}{200}$
 $\Rightarrow \frac{d}{200} = 0.281$
 $\Rightarrow d = 56.2 \text{ km}$

(iii) One hour later:

relative distance = relative speed × time

$$\Rightarrow x = \sqrt{(10\sqrt{2})^2 + (10\sqrt{2} - 10)^2} \times (1)$$
= 14.736 km

$$y^2 = x^2 + d^2 \quad ... \text{ from diagram}$$

$$\Rightarrow y = \sqrt{14.736^2 + 56.2^2}$$

$$\Rightarrow y = 58.1 \text{ km}$$

Q. 11.

(i)
$$\overrightarrow{v_T} = -8\overrightarrow{j}$$

 $\overrightarrow{v_S} = 20 \cos 30^\circ \overrightarrow{i} - 20 \sin 30^\circ \overrightarrow{j}$
 $= 20 \left| \frac{\sqrt{3}}{2} \right| \overrightarrow{i} - 20 \left| \frac{1}{2} \right| \overrightarrow{j}$
 $= 10\sqrt{3} \overrightarrow{i} - 10 \overrightarrow{j}$
 $\overrightarrow{v_{ST}} = \overrightarrow{v_S} - \overrightarrow{v_T}$
 $= 10\sqrt{3} \overrightarrow{i} - 2 \overrightarrow{j}$
 $|\overrightarrow{v_{ST}}| = \sqrt{(10\sqrt{3})^2 + (-2)^2}$
 $= 4\sqrt{19} = 17.44 \text{ km/h}$
 $\tan \theta = \frac{2}{10\sqrt{3}}$
 $= \frac{1}{5\sqrt{3}}$
 $\Rightarrow \theta = 6.59^\circ$
 $\Rightarrow 6.59^\circ$ S of E

(ii)
$$\tan \theta = \frac{1}{5\sqrt{3}}$$

 $\Rightarrow \sin \theta = \frac{1}{\sqrt{76}}$
But, $\sin \theta = \frac{d}{100}$
 $\Rightarrow \frac{d}{100} = \frac{1}{\sqrt{76}}$
 $\Rightarrow d = \frac{100}{\sqrt{76}}$
= 11.47 km

(iii) Two hours before:

relative distance = relative speed × time

$$\Rightarrow x = 17.44 \times 2$$

$$= 34.88 \text{ km}$$

$$y^2 = x^2 + d^2$$

$$\Rightarrow y = \sqrt{34.88^2 + 11.47^2}$$

Q. 12.

= 36.72 km

(i)
$$\overrightarrow{v_A} = 10 \cos 30^\circ \vec{i} + 10 \sin 30^\circ \vec{j}$$

$$= 10 \left| \frac{\sqrt{3}}{2} \right| \vec{i} + 10 \left| \frac{1}{2} \right| \vec{j}$$

$$= 5\sqrt{3} \vec{i} + 5 \vec{j}$$

$$\overrightarrow{v_B} = 3 \vec{j}$$

$$\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B} = 5\sqrt{3} \vec{i} + 2 \vec{j}$$

(ii)
$$|\overrightarrow{v_{AB}}| = \sqrt{(5\sqrt{3})^2 + 2^2} = \sqrt{79} \text{ m/s}$$

 $\tan \theta = \frac{2}{5\sqrt{3}}$
 $\Rightarrow \theta = 13^\circ$
 $\Rightarrow 13^\circ \text{ N of E}$

(iii)
$$\frac{d}{100} = \sin 13^{\circ}$$
$$\Rightarrow d = 100 \sin 13^{\circ}$$
$$= 22.5 \text{ m}$$

(iv) Draw a circle of radius 30 m with centre *B*.

As long as the relative path, $\overrightarrow{v_{AB}}$, is inside this circle, Adam and Barbara will be within 30 m of each other. This will be for a relative distance of 2x.

$$x^{2} + d^{2} = 30^{2}$$
 ... but $d = 22.5$
 $\Rightarrow x = \sqrt{30^{2} - 22.5^{2}}$
= 19.843 m

⇒ Adam and Barbara will be within 30 m of each other for a relative distance of 2(19.843) = 39.686 m

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{39.686}{\sqrt{79}}$
= 4.47 s

Q. 13.

(i)
$$\overrightarrow{v_p} = 50 \cos 45^{\circ i} - 50 \sin 45^{\circ j}$$

 $= 50 \left| \frac{1}{\sqrt{2}} \right| i - 50 \left| \frac{1}{\sqrt{2}} \right| j$
 $= 25\sqrt{2}i - 25\sqrt{2}j$
 $\overrightarrow{v_Q} = -30j$
 $\overrightarrow{v_{QP}} = \overrightarrow{v_Q} - \overrightarrow{v_p}$
 $= -25\sqrt{2}i + (25\sqrt{2} - 30)j$
 $= -35.36i + 5.36j$
 $|\overrightarrow{v_{PQ}}| = \sqrt{(-35.36)^2 + (5.36)^2}$
 $= 35.76 \text{ m/s}$
 $\tan \theta = \frac{5.36}{35.36}$
 $\Rightarrow \theta = 8.62^{\circ}$
 $\Rightarrow 8.62^{\circ} \text{ N of W}$
(ii) $\frac{d}{75} = \sin 8.62^{\circ}$
 $\Rightarrow d = 75 \sin 8.62^{\circ}$

 $\Rightarrow d = 11.24 \text{ km}$

(iii) Draw a circle of radius 40 km with centre at *P*.

Ships will be within range of each other while the relative path, $\overrightarrow{v_{QP}}$, is inside this circle.

This will be for a relative distance of 2x.

$$x^2 + d^2 = 40^2$$
 ... but $d = 11.24$

$$\Rightarrow x = \sqrt{40^2 - 11.24^2} = 38.39 \text{ km}$$

 \Rightarrow Ships will be within range of each other for a relative distance of 2(38.39) = 76.78 km.

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$
$$= \frac{76.78}{35.76}$$
$$= 2.15 \text{ hours}$$
$$= 2 \text{ hours } 9 \text{ mins}$$

From the diagram,

$$(x+y)^2 + d^2 = 75^2 \dots$$
 but $d = 11.24$

$$\Rightarrow x + y = \sqrt{75^2 - 11.24^2}$$
= 74.15 ... but x = 38.39
$$\Rightarrow y = 74.15 - 38.39$$
= 35.76

Time before coming into range: $\frac{\text{relative distance}}{\text{relative speed}} = \frac{35.76}{35.76} = 1 \text{ hour}$

⇒ Ships will come into range at 13.00 hours.

Ships stay within range for 2 hours and 9 minutes.

⇒ Ships will lose sight of each other at 15.09 hours.

Exercise 4C

Q. 1. (i) Time =
$$\frac{\text{distance}}{\text{speed}} = \frac{60}{12} = 5 \text{ s}$$

(ii) Distance travelled by $Q = \text{speed} \times \text{time} = 5 \times 5 = 25 \text{ m}$

⇒ Distance from
$$O = 51 - 25 = 26 \text{ m}$$

(iii) $\overrightarrow{V} = 12\overrightarrow{i}$

(iii)
$$\overrightarrow{v_p} = 12\overrightarrow{j}$$

 $\overrightarrow{v_Q} = 5\overrightarrow{i}$
 $\overrightarrow{v_{QP}} = \overrightarrow{v_Q} - \overrightarrow{v_P}$
 $= 5\overrightarrow{i} - 12\overrightarrow{j}$

Q. 2. (i) Time = $\frac{\text{distance}}{\text{speed}} = \frac{20}{8} = 2.5 \text{ s}$

 $\Rightarrow d = 24 \text{ m}$

(ii) Distance travelled by $M = \text{speed} \times \text{time} = 6 \times 2.5 = 15 \text{ m}$ \Rightarrow Distance from O = 65 - 15 = 50 m

(iii)
$$\overrightarrow{v_M} = 6\overrightarrow{i}$$

 $\overrightarrow{v_N} = 8\overrightarrow{j}$
 $\overrightarrow{v_{MN}} = \overrightarrow{v_M} - \overrightarrow{v_N}$
 $= 6\overrightarrow{i} - 8\overrightarrow{j} \text{ m/s}$

$$\tan \theta = \frac{6}{6} = \frac{4}{3}$$

$$\Rightarrow \sin \theta = \frac{4}{5}$$
But, $\sin \theta = \frac{d}{50}$

$$\Rightarrow \frac{d}{50} = \frac{4}{5}$$

$$\Rightarrow d = 40 \text{ m}$$

Q. 3. (i)
$$\overrightarrow{v_A} = 21\overrightarrow{i}$$

 $\overrightarrow{v_B} = -20\overrightarrow{j}$
 $\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B}$
 $= 21\overrightarrow{i} + 20\overrightarrow{i}$ m/s

Wait until *B* reaches the intersection.

Time =
$$\frac{\text{distance}}{\text{speed}} = \frac{100}{20} = 5 \text{ s}$$

Find how far *A* has travelled in this time.

$$Distance = speed \times time$$

$$= 21 \times 5 = 105 \text{ m}$$

$$\Rightarrow$$
 Distance from $O = 250 - 105$

$$= 145 \text{ m}$$

$$\tan \theta = \frac{20}{21}$$

$$\Rightarrow \sin \theta = \frac{20}{29}$$

But,
$$\sin \theta = \frac{d}{145}$$

$$\Rightarrow \frac{d}{145} = \frac{20}{29}$$

$$\Rightarrow d = 100 \text{ m}$$

(iii)
$$x^2 + d^2 = 145^2$$
 ... but $d = 100$

$$\Rightarrow x = \sqrt{145^2 - 100^2} = 105$$

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$
$$= \frac{105}{\sqrt{21^2 + 20^2}}$$
$$= 3.62 \text{ s}$$

Q. 4. (i) Time =
$$\frac{\text{distance}}{\text{speed}}$$
$$= \frac{100}{5}$$
$$= 20 \text{ s}$$

(ii) Distance travelled by
$$B = \text{speed} \times \text{time} = 8 \times 20 = 160 \text{ m}$$

 $\Rightarrow \text{Distance from } O = 200 - 160 = 40 \text{ m}$
 $\Rightarrow \text{Distance between } A \text{ and } B = 40 \text{ m}$

(iii)
$$\overrightarrow{v_A} = -5 \cos \theta \overrightarrow{i} - 5 \sin \theta \overrightarrow{j}$$

$$= -5 \left| \frac{4}{5} \right| \overrightarrow{i} - 5 \left| \frac{3}{5} \right| \overrightarrow{j}$$

$$= -4 \overrightarrow{i} - 3 \overrightarrow{j}$$

$$\overrightarrow{v_B} = -8 \overrightarrow{i}$$

$$\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B}$$

$$= 4 \overrightarrow{i} - 3 \overrightarrow{j}$$

$$\Rightarrow |\overrightarrow{v_{AB}}| = \sqrt{4^2 + (-3)^2}$$

$$= 5 \text{ m/s}$$

$$\tan \theta = \frac{3}{4}$$

$$\Rightarrow \theta = 36.87^{\circ}$$
$$\Rightarrow 36.87^{\circ} \text{ S of E}$$

(iv)
$$\tan \theta = \frac{3}{4}$$

$$\Rightarrow \sin \theta = \frac{3}{5}$$
But, $\sin \theta = \frac{d}{40}$

$$\Rightarrow \frac{d}{40} = \frac{3}{5}$$

$$\Rightarrow d = 24 \text{ m}$$

(v)
$$x^2 + d^2 = 40^2$$
 ... but $d = 24$
 $\Rightarrow x = \sqrt{40^2 - 24^2} = 32 \text{ m}$

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{32}{5}$ = 6.4 s

But, *A* and *B* had already been travelling for 20 seconds.

$$\Rightarrow$$
 Time = 26 s

(vi) A: Distance from intersection
$$= 100 - 5t$$

B: Distance from intersection
$$= 200 - 8t$$

$$\Rightarrow \text{Equidistant from } O \text{ when} \\ 100 - 5t = 200 - 8t$$

$$\Rightarrow 3t = 100$$

$$\Rightarrow t = \frac{100}{3}$$

$$= 33\frac{1}{3}$$
 s

Q. 5.
$$\overrightarrow{v_A} = -16 \cos \theta \overrightarrow{i} - 16 \sin \theta \overrightarrow{j}$$

 $= -16 \left(\frac{3}{5}\right) \overrightarrow{i} - 16 \left(\frac{4}{5}\right) \overrightarrow{j} = -9.6 \overrightarrow{i} - 12.8 \overrightarrow{j}$
 $\overrightarrow{v_B} = -v \overrightarrow{i}$
 $\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B} = (v - 9.6) \overrightarrow{i} - 12.8 \overrightarrow{j}$
 $|\overrightarrow{v_{AB}}| = 16$
 $\Rightarrow \sqrt{\left(v - \frac{48}{5}\right)^2 + \left(-\frac{64}{5}\right)^2} = 16$
 $\Rightarrow v^2 - \frac{96}{5}v + \frac{2,304}{25} + \frac{4,096}{25} = 256$
 $\Rightarrow 25v^2 - 480v + 6,400 = 6,400$
 $\Rightarrow 25v^2 - 480v = 0$
 $\Rightarrow 5v^2 - 96v = 0$
 $\Rightarrow v(5v - 96) = 0$
 $\Rightarrow v = \frac{96}{5}$
 $= 19.2 \text{ m/s}$

(i) Find out how long it takes for *A* to get to the junction.

$$Time = \frac{distance}{speed} = \frac{96}{16} = 6 s$$

Find out how far *B* has travelled at this time.

Distance = speed
$$\times$$
 time
= 19.2 \times 6 = 115.2 m

Since *B* was 38.4 m from *O* at the beginning, *B* is now 76.8 m past *O*.

$$\overrightarrow{v_{AB}} = 9.6\overrightarrow{i} - 12.8\overrightarrow{j}$$

$$\tan \alpha = \frac{12.8}{9.6} = \frac{4}{3} \implies \sin \alpha = \frac{4}{5}$$
But, $\sin \alpha = \frac{d}{76.8}$

$$\Rightarrow \frac{d}{76.8} = \frac{4}{5}$$

$$\Rightarrow d = 61.44 \text{ m}$$

(ii) 2 seconds before:

Relative distance =
$$x$$

= relative speed \times time
= $16 \times 2 = 32 \text{ m}$

Actual distance
$$= y$$

$$y^2 = 32^2 + 61.44^2$$

$$\Rightarrow y = 69 \text{ m}$$

Q. 6.
$$\overrightarrow{V_A} = -10 \cos \theta \vec{i} - 10 \sin \theta \vec{j}$$

 $= -10 \left(\frac{4}{5} \right) \vec{i} - 10 \left(\frac{3}{5} \right) \vec{j} = -8 \vec{i} - 6 \vec{j}$
 $\overrightarrow{V_B} = -20 \vec{i}$
 $\overrightarrow{V_{AB}} = \overrightarrow{V_A} - \overrightarrow{V_B} = 12 \vec{i} - 6 \vec{j}$

Find out how long it takes for *A* to get to the junction.

Time =
$$\frac{\text{distance}}{\text{speed}} = \frac{100}{10} = 10 \text{ s}$$

Find out how far *B* has travelled at this time.

Distance = speed
$$\times$$
 time = 20 \times 10 = 200 m

Since *B* was 100 m from *O* at the beginning, *B* is now 100 m past *O*.

$$\tan \theta = \frac{6}{12} = \frac{1}{2} \implies \sin \theta = \frac{1}{\sqrt{5}}$$

But,
$$\sin \theta = \frac{d}{100}$$

$$\Rightarrow \frac{d}{100} = \frac{1}{\sqrt{5}}$$

$$\Rightarrow d = \frac{100}{\sqrt{5}}$$

$$= 20\sqrt{5}$$

$$= 44.72 \text{ m}$$

Q. 7.
$$\overrightarrow{v_A} = -30 \cos 60^{\circ} \overrightarrow{i} - 30 \sin 60^{\circ} \overrightarrow{j}$$

$$= -30 \left(\frac{1}{2} \right) \overrightarrow{i} - 30 \left(\frac{\sqrt{3}}{2} \right) \overrightarrow{j} = -15 \overrightarrow{i} - 15 \sqrt{3} \overrightarrow{j}$$

$$\overrightarrow{v_B} = -40 \overrightarrow{i}$$

$$\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B}$$

$$= 25 \overrightarrow{i} - 15 \sqrt{3} \overrightarrow{i}$$

Time for A to get to junction =
$$\frac{\text{distance}}{\text{speed}}$$

= $\frac{3.5}{30}$
= $\frac{7}{60}$ h

Distance travelled by $B = \text{speed} \times \text{time}$

$$=40 \times \frac{7}{60} = \frac{14}{3} \, \text{km}$$

 \Rightarrow When *A* is at the junction, *B* is $\frac{8}{3}$ km past the junction.

$$\tan \theta = \frac{15\sqrt{3}}{25}$$
$$= \frac{3\sqrt{3}}{5}$$

$$\Rightarrow \sin \theta = \frac{3\sqrt{3}}{2\sqrt{13}}$$

But,
$$\sin \theta = \frac{d}{\frac{8}{3}} = \frac{3d}{8}$$

$$\Rightarrow \frac{3d}{8} = \frac{3\sqrt{3}}{2\sqrt{13}}$$

$$\Rightarrow d = \frac{4\sqrt{39}}{13}$$
$$= 1.92 \text{ km}$$

Q. 8. (a)
$$\overrightarrow{v_A} = -16 \cos 60^{\circ} \overrightarrow{i} - 16 \sin 60^{\circ} \overrightarrow{j}$$

$$= -16 \left(\frac{1}{2}\right) \overrightarrow{i} - 16 \left(\frac{\sqrt{3}}{2}\right) \overrightarrow{j}$$

$$= -8 \overrightarrow{i} - 8\sqrt{3} \overrightarrow{j}$$

$$\overrightarrow{v_B} = 20 \overrightarrow{i}$$

$$\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B}$$

 $= -28\vec{i} - 8\sqrt{3}\vec{i}$

(b) (i) Find out how long it takes for *A* to reach *O*:

Time =
$$\frac{\text{distance}}{\text{speed}}$$

= $\frac{450}{16}$
= 28.125 s

Find out how far *B* has travelled in this time:

$$Distance = speed \times time$$

$$= 20 \times 28.125 = 562.5 \text{ m}$$

$$\Rightarrow$$
 B is now 762.5 m from O.

$$\tan \theta = \frac{8\sqrt{3}}{28} = \frac{2\sqrt{3}}{7}$$

$$\Rightarrow \cos \theta = \frac{7}{\sqrt{61}}$$

But,
$$\cos \theta = \frac{x}{762.5}$$

$$\Rightarrow \frac{x}{762.5} = \frac{7}{\sqrt{61}}$$

$$\Rightarrow x = 683.4 \text{ m}$$

Time =
$$\frac{\text{relative distance}}{\text{relative speed}}$$

= $\frac{683.4}{\sqrt{(-28)^2 + (-8\sqrt{3})^2}}$

$$= 21.875 s$$

⇒ Closest together 21.875 seconds before they were side by side.

$$28.125 - 21.875 = 6.25 \text{ s}$$

(ii) Distance of A from O = 450 - 16t

Distance of B from O = 200 + 20t

Equidistant from O when

$$450 - 16t = 200 + 20t$$

$$\Rightarrow 36t = 250$$

$$\Rightarrow t = 6.94 \text{ s}$$

Exercise 4D

Q. 1. (i)
$$\overrightarrow{V_B} = \overrightarrow{i} + 2\overrightarrow{j}$$

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{40}{2}$
= 20 s

(ii) Distance downstream: speed downstream \times time

$$= 1 \times 20$$

= 20 m

Q. 2. $\overrightarrow{v_B} = 5\overrightarrow{i} + 12\overrightarrow{j}$

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{60}{12}$

Distance downstream: speed downstream × time

$$= 5 \times 5$$
$$= 25 \text{ m}$$

Q. 3. (i) Puts all effort into going across:

$$\Rightarrow \overrightarrow{v_B} = 3\overrightarrow{i} + 5\overrightarrow{j}$$
Time across = $\frac{\text{distance across}}{\text{speed across}}$

$$= \frac{60}{5}$$

(ii) Heads upstream at an angle *A* to the bank at full speed, 5 m/s.

$$x^2 + 3^2 = 5^2$$
$$\Rightarrow x = 4$$

⇒ Boat travels at 4 m/s straight across.

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{60}{4}$
= 15 s

Q. 4. (i) Puts all effort into going across:

$$\Rightarrow \overrightarrow{v_B} = 0.5\overrightarrow{i} + 1.3\overrightarrow{j}$$
Time across = $\frac{\text{distance across}}{\text{speed across}}$

$$= \frac{39}{1.3}$$

$$= 30 \text{ s}$$

(ii) Heads upstream at an angle *A* to the bank at full speed, 1.3 m/s.

$$x^2 + 0.5^2 = 1.3^2$$
$$\Rightarrow x = 1.2$$

⇒ Boat travels at 1.2 m/s straight across.

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{39}{1.2}$
= 32.5 s

Q. 5. (i) Puts all effort into going across:

$$\Rightarrow \overrightarrow{v_B} = 0.7\overrightarrow{i} + 2.5\overrightarrow{j}$$
Time across = $\frac{\text{distance across}}{\text{speed across}}$

$$= \frac{60}{2.5}$$

$$= 24 \text{ s}$$

(ii) Heads upstream at an angle *A* to the bank at full speed, 2.5 m/s.

$$\Rightarrow x = 2.4$$

⇒ Boat travels at 2.4 m/s straight across.

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{60}{2.4}$
= 25 s

Q. 6. (i) Puts all effort into going across:

$$\Rightarrow \overrightarrow{v_B} = 0.8\overrightarrow{i} + 1.7\overrightarrow{j}$$
Time across = $\frac{\text{distance across}}{\text{speed across}}$

$$= \frac{510}{1.7}$$
= 300 s

(ii) Heads upstream at an angle *A* to the bank at full speed, 2.5 m/s.

$$x^2 + 0.8^2 = 1.7^2$$
$$\Rightarrow x = 1.5$$

⇒ Boat travels at 1.5 m/s straight across.

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{510}{1.5}$
= 340 s

Q. 7. (i) Puts all effort into going across:

$$\Rightarrow \overrightarrow{v_B} = 2.1\overrightarrow{i} + 2.9\overrightarrow{j}$$

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{58}{2.9}$
= 20 s

Distance downstream: speed downstream × time

$$= 2.1 \times 20$$

= 42 m

(ii) Heads upstream at an angle *A* to the bank at full speed, 2.9 m/s.

$$x^2 + 2.1^2 = 2.9^2$$

$$\Rightarrow x = 2$$

⇒ Boat travels at 2 m/s straight across.

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{58}{2}$
= 29 s

Q. 8. Quickest route: Puts all effort into going across:

$$\Rightarrow \overrightarrow{v_B} = 0.3\overrightarrow{i} + 0.5\overrightarrow{j}$$
Time across = $\frac{\text{distance across}}{\text{speed across}}$

$$= \frac{50}{0.5}$$

$$= 100 \text{ s}$$

Shortest route: Heads upstream at an angle *A* to the bank at full speed, 0.5 m/s.

$$x^2 + 0.3^2 = 0.5^2$$

$$\Rightarrow x = 0.4$$

 \Rightarrow Boat travels at 0.4 m/s straight across.

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{50}{0.4}$
= 125 s

⇒ Crossing times differ by 25 seconds.

Q. 9. (i) He should head straight across.

(ii)
$$\overrightarrow{v_B} = \frac{5}{6}\overrightarrow{i} + \frac{5}{9}\overrightarrow{j}$$

Time across = $\frac{\text{distance across}}{\text{speed across}}$
= $\frac{50}{\frac{5}{9}}$
= $50\left(\frac{9}{5}\right)$

(iii) Distance downstream: speed downstream × time

$$= \frac{5}{6} \times 90$$
$$= 75 \text{ m}$$

Q. 10.
$$\overrightarrow{v_{PW}} = 100\overrightarrow{i}$$

$$\overrightarrow{v_W} = -10\overrightarrow{j}$$

$$\Rightarrow \overrightarrow{v_P} = 100\overrightarrow{i} - 10\overrightarrow{j}$$

Speed =
$$|\overrightarrow{v_P}|$$

$$= \sqrt{100^2 + (-10)^2}$$

$$= 10\sqrt{101}$$

$$= 100.5 \text{ m/s}$$

$$\tan \theta = \frac{10}{100}$$

$$=\frac{1}{10}$$

$$\Rightarrow \theta = 5.71^{\circ}$$

$$= 5^{\circ}43'$$

$$\Rightarrow$$
 5°43′ S of E

Q. 11. Upstream:

$$\overrightarrow{v_C} = \overrightarrow{v_{CR}} + \overrightarrow{v_R}$$

$$= -5\overrightarrow{i} + (3\overrightarrow{i})$$

$$= -2\overrightarrow{i}$$

$$\mathsf{Time} = \frac{80}{2}$$

= 40 s

Downstream:

$$\overrightarrow{v_C} = 5\overrightarrow{i} + 3\overrightarrow{i}$$

$$= 8\vec{i}$$

Time =
$$\frac{80}{8}$$

Total time = 40 + 10 = 50 s

Lake: Total time =
$$\frac{80}{5} + \frac{80}{5}$$

$$= 32 s$$

which is 18 seconds less

Q. 12. Still water: Time =
$$\frac{\text{distance}}{\text{speed}}$$

$$=\frac{960}{8}=120 \text{ s}$$

Current: A to B: Time =
$$\frac{\text{distance}}{\text{speed}}$$

$$=\frac{480}{10}$$

$$= 48 s$$

Current:
$$B \text{ to } A$$
: Time = $\frac{\text{distance}}{\text{speed}}$
= $\frac{480}{6}$

Total time =
$$48 + 80$$

= 128 s

 \Rightarrow It takes 8 seconds longer when there is a current of 2 m/s from A to B.

= 80 s

Q. 13. (i)
$$\vec{v_R} = 12\vec{i}$$

$$\overrightarrow{v_{BR}} = 5\overrightarrow{j}$$

$$\overrightarrow{v_B} = \overrightarrow{v_{BR}} + \overrightarrow{v_R}$$

$$=12\vec{i}+5\vec{j}$$
 m/s

Magnitude:
$$|\overrightarrow{v_B}| = \sqrt{12^2 + 5^2}$$

$$= 13 \text{ m/s}$$

(ii) Time =
$$\frac{\text{distance}}{\text{speed}}$$

$$=\frac{240}{5}$$

$$= 48 s$$

Distance downstream:

speed downstream × time

$$= 12 \times 48$$

$$= 576 \text{ m}$$

Q. 14.
$$v = \sqrt{15^2 + 8^2}$$

$$= 17 \text{ m/s}$$

Q. 15. (i)
$$\overrightarrow{v_R} = 7\overrightarrow{i}$$

$$\overrightarrow{v_{BR}} = -25 \cos \alpha \overrightarrow{i} + 25 \sin \alpha \overrightarrow{j}$$

$$\vec{v}_{R} = (7 - 25 \cos \alpha) \vec{i} + 25 \sin \alpha \vec{j}$$

$$7 - 25\cos\alpha = 0$$

$$\Rightarrow \cos \alpha = \frac{7}{25}$$

$$\Rightarrow \sin \alpha = \frac{24}{25}$$

$$\overrightarrow{v_{BR}}$$
 $\overrightarrow{\alpha}$ $\overrightarrow{v_B}$

Since
$$\cos \alpha = \frac{7}{25}$$

$$= 0.28$$

$$\alpha = 73^{\circ}44'$$

(ii)
$$v_B = 0\vec{i} + 25\left(\frac{24}{25}\right)\vec{j}$$

$$=24\vec{i}$$

$$Time = \frac{120}{24}$$

$$= 5 \, s$$

Q. 16.
$$\overrightarrow{v_W} = 60\overrightarrow{j}$$

 \Rightarrow Plane must head at an angle *A* as shown in order to counteract the wind.

$$x^2 + 60^2 = 100^2$$

$$\Rightarrow x = 80$$

⇒ Plane actually flies at 80 m/s due East.

Time =
$$\frac{\text{distance}}{\text{speed}}$$
$$= \frac{189}{80}$$
$$= 2.3625 \text{ h}$$
$$= 2 \text{ h 21 m 45 s}$$

The time taken for the return journey is the same because the wind is blowing directly from the south. This means that the wind will have no effect on the i-velocity of the plane. The plane will still fly at 80 km/h but in the opposite direction.

Q. 17.
$$\cos \theta = \frac{u}{2u}$$

$$= \frac{1}{2}$$

$$\Rightarrow \theta = 60^{\circ}$$

Q. 18.
$$\overrightarrow{v_c} = -\overrightarrow{j}$$

 $\overrightarrow{v_s} = 2 \cos 45^{\circ} \overrightarrow{i} - 2 \sin 45^{\circ} \overrightarrow{j}$
 $= 1.414 \overrightarrow{i} - 1.414 \overrightarrow{j}$
 $\overrightarrow{v_{sc}} = \overrightarrow{v_s} - \overrightarrow{v_c} = 1.414 \overrightarrow{i} - 0.414 \overrightarrow{j}$
 $v_{sc} = \sqrt{(1.414)^2 + (-0.414)^2}$
 $= 1.47 \text{ m/s}$

Q. 19.
$$\overrightarrow{v_A} = -100\overrightarrow{i}$$

 $\overrightarrow{v_W} = -20 \cos 30\overrightarrow{i} + 20 \sin 30\overrightarrow{j}$
 $= -17.32\overrightarrow{i} + 10\overrightarrow{j}$
 $\overrightarrow{v_{AW}} = \overrightarrow{v_A} - \overrightarrow{v_W}$
 $= -100\overrightarrow{i} - (17.32\overrightarrow{i} + 10\overrightarrow{j})$
 $= -82.68\overrightarrow{i} - 10\overrightarrow{j}$
 $|\overrightarrow{v_{AW}}| = \sqrt{(-82.68)^2 + (-10)^2}$
 $= 83.28 \text{ km/h}$

Q. 20.
$$\overrightarrow{v_w} = -50 \cos 45^{\circ \hat{i}} - 50 \sin 45^{\circ \hat{j}}$$

= $-35.355 \overrightarrow{i} - 35.355 \overrightarrow{j}$

$$\overrightarrow{v_{AW}} = 200\cos\alpha \overrightarrow{i} + 200\sin\alpha \overrightarrow{j}$$

$$\vec{v_A} = (200 \cos \alpha - 35.355)\vec{i} + (200 \sin \alpha - 35.355)\vec{j}$$

But
$$200 \cos \alpha - 35.355 = 0$$

$$\Rightarrow \cos \alpha = \frac{35.355}{200} = 0.1768$$

$$\Rightarrow \alpha = 79^{\circ} 49'$$

$$\vec{v_A} = 0\vec{i} + (200(0.9843) - 35.355)\vec{j}$$
$$= 161.505\vec{j}$$
$$= 161.5 \text{ km/h}$$

Q. 21.

$$\overrightarrow{v_{SC}} = 10 \cos \alpha \overrightarrow{i} + 10 \sin \alpha \overrightarrow{j}$$

$$\overrightarrow{v_C} = 5\overrightarrow{i} - 6\overrightarrow{j}$$

$$\overrightarrow{v_S} = \overrightarrow{v_{SC}} + \overrightarrow{v_C}$$

$$= (10\cos\alpha + 5)\vec{i} + (10\sin\alpha - 6)\vec{j}$$

j-component = 0

$$10\sin\alpha-6=0$$

$$\Rightarrow \sin \alpha = \frac{3}{5}$$

$$\Rightarrow$$
 cos $\alpha = \frac{4}{5}$

$$\vec{v}_S = \left| 10 \left| \frac{4}{5} \right| + 5 \right| \vec{i} + 0 \vec{j} = 13 \vec{i}$$

$$Time = \frac{195}{13}$$

$$= 15 s$$

Returning is similar, giving the result

$$\overrightarrow{v_S} = (-10\cos\alpha + 5)\overrightarrow{i} + (10\sin\alpha - 6)\overrightarrow{j}$$

$$10\sin\alpha - 6 = 0$$

$$\Rightarrow \sin \alpha = \frac{3}{5}$$

$$\Rightarrow \cos \alpha = \frac{4}{5}$$

$$\therefore \overrightarrow{v_S} = \left(-10\left(\frac{4}{5}\right) + 5\right)\overrightarrow{i}$$

$$=-3i$$

$$Time = \frac{195}{3}$$

$$= 65 \, s$$

$$\therefore \text{ Total time} = 15 + 65$$

$$= 80 s$$

The difference between the outward and return speeds must be $2 \times 5 = 10$ m/s

(Since outward speed gains 5 m/s from the current, but return speed loses 5 m/s)

The outward speed = $\frac{195}{13}$ = 15 m/s, the return speed will be 15 - 10 = 5 m/s.

The time will be $\frac{195}{5} = 39 \text{ s}$

Q. 22.

$$\overrightarrow{v_{RW}} = -18 \cos \alpha \overrightarrow{i} + 18 \sin \alpha \overrightarrow{j}$$

$$\overrightarrow{v_W} = 8\sqrt{2}\overrightarrow{i} - 8\sqrt{2}\overrightarrow{i}$$

$$\vec{v}_{R} = (-18\cos\alpha + 8\sqrt{2})\vec{i} + (18\sin\alpha - 8\sqrt{2})\vec{j}$$

The *i*-component is zero \Rightarrow $-18 \cos \alpha + 8\sqrt{2} = 0$

$$\Rightarrow \cos \alpha = \frac{8\sqrt{2}}{18} = \frac{4\sqrt{2}}{9}$$

$$\Rightarrow \sin \alpha = \frac{7}{9}$$

$$\therefore \overrightarrow{V_B} = 0\overrightarrow{i} + \left(18\left(\frac{7}{9}\right) - 8\sqrt{2}\right)\overrightarrow{j} = (14 - 8\sqrt{2})\overrightarrow{j}$$

Time =
$$\frac{4.25}{14 - 8\sqrt{2}}$$

Similarly, returning time = $\frac{4.25}{14 + 8\sqrt{2}}$

Total time =
$$\frac{4.25}{14 - 8\sqrt{2}} + \frac{4.25}{14 + 8\sqrt{2}}$$

$$= \frac{4.25(14 + 8\sqrt{2}) + 4.25(14 - 8\sqrt{2})}{(14 - 8\sqrt{2})(14 + 8\sqrt{2})} = \frac{7}{4} \text{ hours}$$

$$\overrightarrow{v_W} = \frac{\overrightarrow{v}}{\sqrt{2}}\overrightarrow{i} + \frac{\overrightarrow{v}}{\sqrt{2}}\overrightarrow{j}$$

$$\overrightarrow{v_{AW}} = x \cos \alpha \overrightarrow{i} - x \sin \alpha \overrightarrow{j}$$

$$\therefore \overrightarrow{V_A} = \left(\frac{v}{\sqrt{2}} + x \cos \alpha\right) \overrightarrow{i} + \left(\frac{v}{\sqrt{2}} - x \sin \alpha\right) \overrightarrow{j}$$

j-component = 0

$$\Rightarrow \frac{\vec{v}}{2} - x \sin \alpha = 0$$

$$\Rightarrow \sin \alpha = \frac{V}{\sqrt{2}}x$$

$$\therefore \cos \alpha = \frac{\sqrt{2x^2 - v^2}}{\sqrt{2}x}$$

$$\therefore \overrightarrow{v_A} = \left| \frac{v}{2} + \frac{x\sqrt{2x^2 - v^2}}{\sqrt{2}x} \right| \overrightarrow{i}$$

$$= \left| \frac{v}{\sqrt{2}} + \frac{\sqrt{2x^2 - v^2}}{\sqrt{2}} \right| \vec{i}$$

$$\therefore \left| \overrightarrow{v_A} \right| = \frac{v + \sqrt{2x^2 - v^2}}{\sqrt{2}} = U_1$$

Similarly
$$U_2 = \frac{\sqrt{2x^2 - v^2} - v}{\sqrt{2}}$$

:.
$$U_1 - U_2 = \frac{2v}{\sqrt{2}} = \sqrt{2}v$$
 QED

(ii)
$$U_1 U_2 = \left| \frac{\sqrt{2x^2 - v^2} + v}{\sqrt{2}} \right| \left| \frac{\sqrt{2x^2 - v^2} - v}{\sqrt{2}} \right|$$

$$= \frac{2x^2 - 2v^2}{2}$$

$$= x^2 - v^2 \quad \mathbf{QED}$$

Time =
$$\frac{\text{Distance}}{\text{Speed}} = \frac{d}{\frac{\sqrt{2x^2 - v^2} + v}{\sqrt{2}}} + \frac{d}{\frac{(\sqrt{2x^2 - v^2} - v)}{\sqrt{2}}}$$

$$= \frac{\sqrt{2}d}{\sqrt{2x^2 - v^2} + v} + \frac{\sqrt{2}d}{\sqrt{2x^2 - v^2} - v}$$

$$= \frac{\sqrt{2}d}{\sqrt{2x^2 - v^2} + v} + \frac{\sqrt{2}d\sqrt{2x^2 - v^2} + v}{\sqrt{2x^2 - v^2} + v}$$

$$= \frac{\sqrt{2}d}{\sqrt{2x^2 - v^2} + v} + \frac{\sqrt{2}d\sqrt{2x^2 - v^2} + v}{\sqrt{2x^2 - v^2} + v}$$

$$= \frac{2\sqrt{4x^2 - 2v^2}d}{2x^2 - 2v^2}$$

$$= \frac{\sqrt{4x^2 - 2v^2}d}{x^2 - v^2}$$

$$\overrightarrow{v_{MR}} = -5 \cos \alpha \overrightarrow{i} + 5 \sin \alpha \overrightarrow{j}$$

$$\overrightarrow{v_R} = 13\overrightarrow{i}$$

$$\overrightarrow{v_M} = (13 - 5 \cos \alpha) \overrightarrow{i} + 5 \sin \alpha \overrightarrow{j}$$

$$\tan \theta = \frac{j\text{-component}}{i\text{-component}} = \frac{5 \sin \alpha}{13 - 5 \cos \alpha}$$

$$\frac{d(\tan\theta)}{d\alpha} = \frac{(13 - 5\cos\alpha)(5\cos\alpha) - 5\sin\alpha (5\sin\alpha)}{(13 - 5\cos\alpha)^2} = 0$$

$$\Rightarrow$$
 65 cos α - 25 cos² α - 25 sin² α = 0

$$\Rightarrow$$
 65 cos α - 25(cos² α + sin² α) = 0

$$\Rightarrow 65 \cos \alpha - 25 = 0$$
$$\Rightarrow \cos \alpha = \frac{5}{13}$$

The shortest path is where θ is a maximum and therefore where $\tan \theta$ is a maximum, since $\tan \theta$ is an increasing function in θ . That is to say that the shortest path is where $\cos \alpha = \frac{5}{13}$, and hence $\sin \alpha = \frac{12}{13}$

In this case
$$\overrightarrow{v_M} = \left(13 - 5\left(\frac{5}{13}\right)\right)\overrightarrow{i} + 5\left(\frac{12}{13}\right)\overrightarrow{j}$$
$$= \frac{144}{13}\overrightarrow{i} + \frac{60}{13}\overrightarrow{j}$$

Crossing time =
$$\frac{60}{\frac{60}{12}}$$
 = 13 s

Q. 25.

$$\overrightarrow{v_{MR}} = -\cos\alpha \overrightarrow{i} + \sin\alpha \overrightarrow{j}$$

$$\overrightarrow{v_R} = 2\overrightarrow{i}$$

$$\overrightarrow{v_{MR}} = \overrightarrow{v_M} - \overrightarrow{v_R}$$

$$\Rightarrow \overrightarrow{v_M} = \overrightarrow{v_{MR}} + \overrightarrow{v_R}$$
$$= (2 - \cos \alpha)\overrightarrow{i} + \sin \alpha \overrightarrow{j}$$

$$\Rightarrow \tan \theta = \frac{\sin \alpha}{2 - \cos \alpha}$$

 $\tan \theta$ will have a maximum value when $\frac{d}{d\alpha}(\tan \theta) = 0$

$$\frac{d}{d\alpha}(\tan \theta) = \frac{(2 - \cos \alpha)(\cos \alpha) - (\sin \alpha)(\sin \alpha)}{(2 - \cos \alpha)^2} \dots \text{ using the Quotient Rule}$$

$$\Rightarrow \frac{d}{d\alpha}(\tan \theta) = \frac{2 \cos \alpha - \cos^2 \alpha - \sin^2 \alpha}{(2 - \cos \alpha)^2}$$

$$\Rightarrow \frac{d}{d\alpha}(\tan \theta) = \frac{2 \cos \alpha - (\cos^2 \alpha + \sin^2 \alpha)}{(2 - \cos \alpha)^2} \dots \cos^2 \alpha + \sin^2 \alpha = 1$$

$$\Rightarrow \frac{d}{d\alpha}(\tan \theta) = \frac{2 \cos \alpha - 1}{(2 - \cos \alpha)^2}$$
Putting $\frac{d}{d\alpha}(\tan \theta) = 0$ gives
$$\frac{2 \cos \alpha - 1}{(2 - \cos \alpha)^2} = 0$$

$$\Rightarrow 2 \cos \alpha - 1 = 0$$

$$\Rightarrow \cos \alpha = \frac{1}{2}$$

Shortest path will occur when $\alpha = 60^{\circ}$

$$\Rightarrow \overrightarrow{v_M} = (2 - \cos 60^\circ) \overrightarrow{i} + \sin 60^\circ \overrightarrow{j}$$

$$= \left(2 - \frac{1}{2}\right) \overrightarrow{i} + \frac{\sqrt{3}}{2} \overrightarrow{j} = \frac{3}{2} \overrightarrow{i} + \frac{\sqrt{3}}{2} \overrightarrow{j}$$
Time across = $\frac{\text{distance across}}{\text{speed across}}$

$$= \frac{36}{\frac{\sqrt{3}}{2}}$$

$$= \frac{72}{\sqrt{3}}$$

$$= 24\sqrt{3} \text{ s}$$

Q. 26. (a)
$$\cos A = \sqrt{1 - \sin^2 A}$$

(b)
$$\overrightarrow{v_{BC}} = 5\overrightarrow{i} - 2\overrightarrow{j}$$

 $\overrightarrow{v_C} = 5 \cos \alpha \overrightarrow{i} + 5 \sin \alpha \overrightarrow{j}$
 $\overrightarrow{v_B} = (5 + 5 \cos \alpha)\overrightarrow{i} + (-2 + 5 \sin \alpha)\overrightarrow{j}$
This is in a N.E. direction
 $\therefore \frac{-2 + 5 \sin \alpha}{5 + 5 \cos \alpha} = \tan 45^\circ = 1$

$$\therefore \frac{-1}{5+5\cos\alpha} = \tan 45^\circ = 1$$

$$\Rightarrow -2+5\sin\alpha = 5+5\cos\alpha$$

$$\Rightarrow -2 + 5 \sin \alpha = 5 + 5 \sqrt{1 - \sin^2 \alpha}$$

$$\Rightarrow -7 + 5 \sin \alpha = 5\sqrt{1 - \sin^2 \alpha}$$

$$\Rightarrow 49 - 70 \sin \alpha + 25 \sin^2 \alpha = 25(1 - \sin^2 \alpha)$$

$$\Rightarrow 50 \sin^2 \alpha - 70 \sin \alpha + 24 = 0$$

$$\Rightarrow 25 \sin^2 \alpha - 35 \sin \alpha + 12 = 0$$

$$\Rightarrow$$
 (5 sin α - 3) (5 sin α - 4) = 0

$$\Rightarrow \sin \alpha = \frac{3}{5} \qquad \mathbf{OR} \quad \sin \alpha = \frac{4}{5}$$

$$\Rightarrow$$
 cos $\alpha = \pm \frac{4}{5}$ **OR** cos $\alpha = \pm \frac{3}{5}$

Possibility 1:
$$\sin \alpha = \frac{3}{5}, \cos \alpha = \frac{4}{5} \implies \overrightarrow{v_B} = 9\overrightarrow{i} + 3\overrightarrow{j}$$
. Reject

Possibility 2:
$$\sin \alpha = \frac{3}{5}$$
, $\cos \alpha = -\frac{4}{5} \implies \overrightarrow{v_B} = \overrightarrow{i} + \overrightarrow{j}$. Correct

Possibility 3:
$$\sin \alpha = \frac{4}{5}$$
, $\cos \alpha = \frac{3}{5}$ $\Rightarrow \overrightarrow{v_B} = 8\overrightarrow{i} + 2\overrightarrow{j}$. Reject

Possibility 4:
$$\sin \alpha = \frac{4}{5}$$
, $\cos \alpha = -\frac{3}{5}$ $\Rightarrow \overrightarrow{v_B} = 2\overrightarrow{i} + 2\overrightarrow{j}$. Correct

(i)
$$\overrightarrow{V_C} = -4\overrightarrow{i} + 3\overrightarrow{j}$$
 OR $-3\overrightarrow{i} + 4\overrightarrow{j}$ m/s

(ii)
$$\overrightarrow{v_R} = \overrightarrow{i} + \overrightarrow{j}$$
 OR $2\overrightarrow{i} + 2\overrightarrow{j}$ m/s

Exercise 4E

Q. 1. (i) Case 1:
$$\overrightarrow{v_M} = 4\overrightarrow{i}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\Rightarrow \overrightarrow{v_{WM}} = \overrightarrow{v_W} - \overrightarrow{v_M}$$

$$= (x - 4)\overrightarrow{i} + y\overrightarrow{j}$$

 $\overrightarrow{\overline{v_{\scriptscriptstyle WM}}}$ from the north

$$\Rightarrow x - 4 = 0$$

$$\Rightarrow x = 4$$

Case 2: Let $\overrightarrow{v_i}$ = velocity of the woman

$$\overrightarrow{v_L} = -\overrightarrow{j}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\Rightarrow \overrightarrow{v_{WL}} = \overrightarrow{v_W} - \overrightarrow{v_L}$$

$$= x\overrightarrow{i} + (y + 1)\overrightarrow{j}$$

 $\overrightarrow{v_{WI}}$ from the north-west

$$\Rightarrow x = -(y + 1)$$
 ... but $x = 4$

$$\Rightarrow 4 = -y - 1$$

$$\Rightarrow y = -5$$

$$\Rightarrow \overrightarrow{v_W} = 4\overrightarrow{i} - 5\overrightarrow{j} \text{ m/s}$$

(ii) Speed =
$$|\vec{v}_W| = \sqrt{4^2 + (-5)^2}$$

$$=\sqrt{41} \text{ m/s}$$

$$\Rightarrow \tan \theta = \frac{5}{4}$$

$$\Rightarrow \theta = 51.34^{\circ}$$

(iii)
$$\overrightarrow{v_M} = 4\overrightarrow{j}$$

 $\overrightarrow{v_W} = 4\overrightarrow{i} - 5\overrightarrow{j}$
 $\overrightarrow{v_{WM}} = \overrightarrow{v_W} - \overrightarrow{v_M}$
 $= 4\overrightarrow{i} - 9\overrightarrow{j}$

$$\tan \alpha = \frac{9}{4}$$

$$\Rightarrow \alpha = 66^{\circ}$$

$$\Rightarrow$$
 66° S of E

$$\overrightarrow{v_M} = -\overrightarrow{j}$$

$$\overrightarrow{v_M} = \overrightarrow{x_i} + \overrightarrow{y_M} = \overrightarrow{x_i} + \overrightarrow{y_M} = \overrightarrow{$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WM}} = \overrightarrow{v_W} - \overrightarrow{v_M}$$
$$= \overrightarrow{xi} + (y+1)\overrightarrow{i}$$

 $\overrightarrow{v_{\scriptscriptstyle WM}}$ from South-West

$$\Rightarrow x = y + 1$$

$$\Rightarrow x - y = 1$$

Case 2: Walking North

$$\overrightarrow{v_M} = 3\overrightarrow{j}$$

$$\overrightarrow{v_W} = \overrightarrow{xi} + \overrightarrow{yj}$$

$$\overrightarrow{v_{WM}} = \overrightarrow{v_W} - \overrightarrow{v_M} = \overrightarrow{xi} + (y - 3)\overrightarrow{j}$$

 $\overrightarrow{v_{WM}}$ from North-West

$$\Rightarrow x = -(y - 3)$$

$$\Rightarrow x + y = 3$$

But,
$$x - y = 1$$
 ... add

$$\Rightarrow 2x = 4$$

$$\Rightarrow x = 2$$

$$\Rightarrow y = 1$$

$$\Rightarrow \overrightarrow{v_W} = 2\overrightarrow{i} + \overrightarrow{j} \text{ m/s}$$

Q. 3. (i) Let the velocity of the woman be $\overrightarrow{v_L}$, and the velocity of the wind, $\overrightarrow{v_W}$

Case 1:
$$\overrightarrow{v_L} = -2\overrightarrow{j}$$

 $\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$
 $\overrightarrow{v_{WL}} = \overrightarrow{v_W} - \overrightarrow{v_L}$
 $= x\overrightarrow{i} + (y + 2)\overrightarrow{j}$
 $\overrightarrow{v_{WL}}$ from North-West
 $\Rightarrow x = -(y + 2)$

$$\Rightarrow x + y = -2$$
Case 2: $\overrightarrow{v_L} = -14\overrightarrow{j}$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WL}} = \overrightarrow{v_W} - \overrightarrow{v_L}$$

$$= x\overrightarrow{i} + (y + 14)\overrightarrow{j}$$

 $\overrightarrow{v_{WL}}$ towards North-East

$$\Rightarrow x = y + 14$$

$$\Rightarrow x - y = 14$$
But, $x + y = -2$... add
$$\Rightarrow 2x = 12$$

$$\Rightarrow x = 6$$

$$\Rightarrow y = -8$$

$$\Rightarrow \overrightarrow{v_W} = 6\overrightarrow{i} - 8\overrightarrow{j} \text{ m/s}$$

(ii) Speed =
$$|\overrightarrow{v_W}| = \sqrt{6^2 + (-8)^2}$$

= 10 m/s

Q. 4. Case 1:
$$\overrightarrow{v_C} = 7\overrightarrow{j}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WC}} = \overrightarrow{v_W} - \overrightarrow{v_C}$$

$$= x\overrightarrow{i} + (y - 7)\overrightarrow{j}$$

$$\overrightarrow{v_{WC}} \text{ from North-West}$$

$$\Rightarrow x = -(y - 7)$$

 $\Rightarrow x + y = 7$

Case 2:
$$\overrightarrow{v_p} = -\overrightarrow{i}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WP}} = \overrightarrow{v_W} - \overrightarrow{v_P} = (x+1)\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WP}} \text{ from South-West}$$

$$\Rightarrow x + 1 = y$$

$$\Rightarrow x - y = -1$$
But $x + y = 7$

But,
$$x + y = 7$$
 ... add

$$\Rightarrow 2x = 6$$

$$\Rightarrow x = 3$$

$$\Rightarrow y = 4$$

$$\Rightarrow \overrightarrow{v_W} = 3\overrightarrow{i} + 4\overrightarrow{j}$$

$$|\overrightarrow{v_W}| = \sqrt{3^2 + 4^2}$$

$$= 5 \text{ m/s}$$

$$\tan \theta = \frac{4}{3}$$

$$\Rightarrow \theta = 53.13^{\circ}$$

$$\Rightarrow 53.13^{\circ} \text{ N of E}$$

Q. 5. Case 1:
$$\overrightarrow{v_B} = \overrightarrow{j}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WB}} = \overrightarrow{v_W} - \overrightarrow{v_B}$$

$$= x\overrightarrow{i} + (y - 1)\overrightarrow{j}$$

$$\overrightarrow{v_{WB}} \text{ from South-West}$$

$$\Rightarrow x = y - 1$$

$$\Rightarrow x - y = -1$$

Case 2:
$$\overrightarrow{v_B} = 5\overrightarrow{j}$$

 $\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$
 $\overrightarrow{v_{WB}} = \overrightarrow{v_W} - \overrightarrow{v_B} = x\overrightarrow{i} + (y - 5)\overrightarrow{j}$
 $\overrightarrow{v_{WB}}$ from North-West
 $\Rightarrow x = -(y - 5)$
 $\Rightarrow x + y = 5$
But, $x - y = -1$... add
 $\Rightarrow 2x = 4$
 $\Rightarrow x = 2$
 $\Rightarrow y = 3$

 $\Rightarrow \overrightarrow{v}_{11} = 2\overrightarrow{i} + 3\overrightarrow{i} \text{ m/s}$

Q. 6. Case 1:
$$\overrightarrow{v_C} = 3\overrightarrow{i} + 2\overrightarrow{j}$$

 $\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$
 $\overrightarrow{v_{WC}} = \overrightarrow{v_W} - \overrightarrow{v_C}$
 $= (x - 3)\overrightarrow{i} + (y - 2)\overrightarrow{j}$
 $\overrightarrow{v_{WC}}$ from North-West
 $\Rightarrow x - 3 = -(y - 2)$
 $\Rightarrow x + y = 5$

Case 2:
$$\overrightarrow{v_C} = 7\overrightarrow{i}$$

 $\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$
 $\overrightarrow{v_{WC}} = \overrightarrow{v_W} - \overrightarrow{v_C} = (x - 7)\overrightarrow{i} + y\overrightarrow{j}$
 $\overrightarrow{v_{WC}}$ from North
 $\Rightarrow x - 7 = 0 \Rightarrow x = 7$
 $\Rightarrow y = -2$
 $\Rightarrow \overrightarrow{v_W} = 7\overrightarrow{i} - 2\overrightarrow{j}$ m/s

Q. 7. (i) Case 1:
$$\overrightarrow{v_C} = 3\overrightarrow{j}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WC}} = \overrightarrow{v_W} - \overrightarrow{v_C}$$

$$= x\overrightarrow{i} + (y - 3)\overrightarrow{j}$$

 $\overrightarrow{v_{WC}}$ from South-West

$$\Rightarrow x = y - 3$$

$$\Rightarrow x - y = -3$$

Case 2:
$$\overrightarrow{v_C} = 9\overrightarrow{j}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WC}} = \overrightarrow{v_W} - \overrightarrow{v_C}$$

$$= x\overrightarrow{i} + (y - 9)\overrightarrow{j}$$

 $\overrightarrow{v_{WC}}$ from North-West

$$\Rightarrow x = -(y - 9)$$

$$\Rightarrow x + y = 9$$

But,
$$\underline{x - y = -3}$$
 ... add

$$\Rightarrow 2x = 6$$

$$\Rightarrow x = 3$$

$$\Rightarrow y = 6$$

$$\Rightarrow \overrightarrow{v_W} = 3\overrightarrow{i} + 6\overrightarrow{j} \text{ m/s}$$

(ii)
$$\overrightarrow{v_C} = \overrightarrow{pj}$$

$$\overrightarrow{v_W} = 3\overrightarrow{i} + 6\overrightarrow{j}$$

$$\overrightarrow{v_{WC}} = \overrightarrow{v_W} - \overrightarrow{v_C} = 3\overrightarrow{i} + (6 - p)\overrightarrow{j}$$

 $\overrightarrow{v_{WC}}$ from West

$$\Rightarrow 6 - p = 0 \Rightarrow p = 6$$

 \Rightarrow She must cycle at 6 m/s North.

Q. 8. (i)
$$\overrightarrow{v_M} = -2\overrightarrow{j}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WM}} = \overrightarrow{v_W} - \overrightarrow{v_M} = x\overrightarrow{i} + (y + 2)\overrightarrow{j}$$

$$\overrightarrow{v_{WM}}$$
 from North-West

$$\Rightarrow x = -(y + 2)$$

Also,
$$\sqrt{x^2 + y^2} = 10$$

$$\Rightarrow x^2 + y^2 = 100$$
 ... let $x = -(y + 2)$

$$\Rightarrow$$
 $(y + 2)^2 + y^2 = 100$

$$\Rightarrow$$
 $y^2 + 4y + 4 + y^2 = 100$

$$\Rightarrow 2v^2 + 4v - 96 = 0$$

$$\Rightarrow y^2 + 2y - 48 = 0$$

$$\Rightarrow (y + 8)(y - 6) = 0$$

$$\Rightarrow y = -8, y = 6$$

$$\Rightarrow x = 6$$

$$\Rightarrow \overrightarrow{v_W} = 6\overrightarrow{i} - 8\overrightarrow{j} \text{ m/s}$$

Note: The y = 6 solution is excluded because this would mean the man is cycling into the wind while travelling south. The wind could not therefore appear to be coming from the North-West.

(ii)
$$\overrightarrow{\mathbf{v}_M} = 2\overrightarrow{\mathbf{j}}$$

$$\overrightarrow{v_W} = 6\overrightarrow{i} - 8\overrightarrow{j} \text{ m/s}$$

$$\overrightarrow{v_{WM}} = \overrightarrow{v_W} - \overrightarrow{v_M}$$
$$= 6\overrightarrow{i} - 10\overrightarrow{i}$$

$$\tan \theta = \frac{10}{6} = \frac{5}{3}$$

$$\Rightarrow \theta = 59^{\circ} \text{ N of W}$$

(i) Case 1: $\overrightarrow{v_G} = 4\overrightarrow{i}$ Q. 9.

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WG}} = \overrightarrow{v_W} - \overrightarrow{v_G}$$

$$= (x - 4)\overrightarrow{i} + y\overrightarrow{i}$$

 $\overrightarrow{v_{WC}}$ from the North-West

$$\Rightarrow x - 4 = -y \Rightarrow x = 4 - y$$

Case 2:
$$\overrightarrow{v_G} = 6\overrightarrow{j}$$

$$\overrightarrow{v_W} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{v_{WG}} = \overrightarrow{v_W} - \overrightarrow{v_G}$$
$$= \overrightarrow{xi} + (y - 6)\overrightarrow{j}$$

$$|\overrightarrow{v_{WG}}| = 10$$

$$\Rightarrow \sqrt{x^2 + (y - 6)^2} = 10 \qquad ... \text{ but } x = 4 - y$$

$$\Rightarrow (4 - y)^2 + (y - 6)^2 = 100$$

$$\Rightarrow 16 - 8y + y^2 + y^2 - 12y + 36 - 100 = 0$$

$$\Rightarrow 2y^2 - 20y - 48 = 0$$

$$\Rightarrow y^2 - 10y - 24 = 0$$

$$\Rightarrow (y - 12)(y + 2) = 0$$

$$\Rightarrow y = 12, y = -2$$

$$\Rightarrow x = -8, x = 6$$
Let $x = -8$ and $y = 12$ Let $x = 6$ and $y = -2$

$$\Rightarrow \overrightarrow{v_W} = -8\overrightarrow{i} + 12\overrightarrow{j} \qquad \Rightarrow \overrightarrow{v_W} = 6\overrightarrow{i} - 2\overrightarrow{j}$$

$$\overrightarrow{v_{WG}} = -12\overrightarrow{i} + 12\overrightarrow{j} \qquad \overrightarrow{v_{WG}} = 2\overrightarrow{i} - 2\overrightarrow{j}$$

 $\overrightarrow{v_{WG}} = -12\overrightarrow{i} + 12\overrightarrow{j}$ is not from the North-West. It is, in fact, towards the North-West. We therefore exclude x = -8 and y = 12

 $\overrightarrow{v_{WG}} = 2\overrightarrow{i} - 2\overrightarrow{j}$ is from the North-West as required. $\Rightarrow \overrightarrow{v_W} = 6\overrightarrow{i} - 2\overrightarrow{j}$ is the actual velocity of the wind.

(ii)
$$\overrightarrow{v_G} = -p\overrightarrow{i}$$
, $p > 0$
 $\overrightarrow{v_W} = 6\overrightarrow{i} - 2\overrightarrow{j}$
 $\overrightarrow{v_{WG}} = \overrightarrow{v_W} - \overrightarrow{v_G} = (6 + p)\overrightarrow{i} - 2\overrightarrow{j}$
 $|\overrightarrow{v_{WG}}| = 8$
 $\Rightarrow \sqrt{(6 + p)^2 + (-2)^2} = 8$
 $\Rightarrow 36 + 12p + p^2 + 4 = 64$
 $\Rightarrow p^2 + 12p - 24 = 0$
 $\Rightarrow p = \frac{-12 \pm \sqrt{(12)^2 - 4(1)(-24)}}{2}$
 $= \frac{-12 \pm \sqrt{240}}{2}$
 $p > 0$
 $\Rightarrow p = \frac{-12 + \sqrt{240}}{2} = 1.75$
 \Rightarrow Girl should cycle at 1.75 m/s due west.

Q. 10.
$$\overrightarrow{v_T} = 4\overrightarrow{i}$$

 $\overrightarrow{v_S} = x\overrightarrow{i} + y\overrightarrow{j}$
 $\overrightarrow{v_{ST}} = \overrightarrow{v_S} - \overrightarrow{v_T} = (x - 4)\overrightarrow{i} + y\overrightarrow{j}$
 $\overrightarrow{v_{ST}}$ towards south-east
 $\Rightarrow x - 4 = -y \Rightarrow x = 4 - y$
Also, $|\overrightarrow{v_S}| = 20$
 $\Rightarrow \sqrt{x^2 + y^2} = 20$... but $x = 4 - y$
 $\Rightarrow (4 - y)^2 + y^2 = 400$
 $\Rightarrow 16 - 8y + y^2 + y^2 = 400$

$$\Rightarrow 2y^2 - 8y - 384 = 0$$

$$\Rightarrow y^2 - 4y - 192 = 0$$

$$\Rightarrow (y - 16)(y + 12) = 0$$

$$\Rightarrow y = 16, y = -12$$

$$\Rightarrow x = -12, x = 16$$
Taking $x = -12$ and $y = 16$ gives
$$\overrightarrow{v_{ST}} = -16\overrightarrow{i} + 16\overrightarrow{j}$$
. This is not towards the south-east. It is, in fact, from the south-east. These values are therefore excluded.

Taking x = 16 and y = -12 gives $\overrightarrow{v_{ST}} = 12\overrightarrow{i} - 12\overrightarrow{j}$. This is towards the south-east.

$$\Rightarrow \overrightarrow{v_S} = 16\overrightarrow{i} - 12\overrightarrow{j} \text{ m/s}.$$

Q. 11. (i) $\overrightarrow{v_H} = 17\overrightarrow{i}$ $\overrightarrow{v_K} = x\overrightarrow{i} + y\overrightarrow{j}$ $\overrightarrow{v_{KH}} = \overrightarrow{v_K} - \overrightarrow{v_H} = (x - 17)\overrightarrow{i} + y\overrightarrow{j}$ $\overrightarrow{v_{KH}}$ north-east $\Rightarrow x - 17 = y \Rightarrow x = y + 17$ Also, $|\overrightarrow{v_K}| = 25$ $\Rightarrow \sqrt{x^2 + y^2} = 25$... but x = y + 17 $\Rightarrow (y + 17)^2 + y^2 = 625$ $\Rightarrow y^2 + 34y + 289 + y^2 = 625$ $\Rightarrow 2y^2 + 34y - 336 = 0$

$$\Rightarrow y^2 + 17y - 168 = 0$$

$$\Rightarrow (y + 24)(y - 7) = 0$$

$$\Rightarrow y = -24, y = 7$$

$$\Rightarrow x = -7, x = 24$$

Taking x = -7 and y = -24 gives $\overrightarrow{v_{KH}} = -24\overrightarrow{i} - 24\overrightarrow{j}$. This is not towards the north-east. It is, in fact, from the north-east. These values of x and y are therefore excluded.

Taking x = 24 and y = 7 gives $\overrightarrow{v_{KH}} = 7\overrightarrow{i} + 7\overrightarrow{j}$. This is towards the north-east.

$$\Rightarrow \overrightarrow{v_{\kappa}} = 24\overrightarrow{i} + 7\overrightarrow{j} \text{ km/h}$$

(ii) $\overrightarrow{V_{KH}} = 7 + 7$ 41 km

$$\sin 45^{\circ} = \frac{d}{41}$$

$$\Rightarrow d = 41 \sin 45^{\circ}$$

$$= 29 \text{ km}$$

(iii) Draw a circle of radius 30 km with centre at *H*.

As long as the relative path, $\overrightarrow{v_{KH}}$ is inside this circle, K and H will be within 30 km of each other. This will be for a relative distance of 2x.

$$x^{2} + d^{2} = 30^{2} \quad ... \text{ but } d = 29$$

$$\Rightarrow x = \sqrt{30^{2} - 29^{2}} = \sqrt{59}$$

$$\Rightarrow 2x = 2\sqrt{59}$$
Time = $\frac{\text{relative distance}}{\text{relative speed}}$

$$= \frac{2\sqrt{59}}{\sqrt{7^{2} + 7^{2}}} = 1.55 \text{ h}$$

$$= 93 \text{ mins.}$$

Exercise 4F

Q. 1. Let t = the time taken to cross the river.

The boat will head upstream at 3 m/s, and would travel a distance of 3t.

Meanwhile, the river carries the boat downstream a distance 4t.

The boat lands 75 m downstream.

$$\tan A = \frac{100}{75} = \frac{4}{3}$$

$$\Rightarrow A = 53.13^{\circ}$$

$$d^2 = 75^2 + 100^2$$

$$\Rightarrow d = 125 \text{ m}$$

Using the Sine Rule:

$$\frac{3t}{\sin A} = \frac{4t}{\sin B} \quad \dots \text{ but } \sin A = \frac{4}{5}$$

$$\Rightarrow 3t \left(\frac{5}{4}\right) = \frac{4t}{\sin B}$$
$$\Rightarrow \frac{15t}{4} = \frac{4t}{\sin B}$$

$$\Rightarrow \sin B = \frac{16}{15}$$

Note: This question can be solved by replacing 75 with 105.

Q. 2. (i) Let t = the time taken to cross the river.

The boat will head upstream at 1 m/s, and would travel a distance of *t*.

Meanwhile, the river carries the boat downstream a distance 2t.

The boat lands 120 m downstream.

$$\tan A = \frac{50}{120}$$
$$= \frac{5}{12}$$

$$\Rightarrow A = 22.62^{\circ}$$

$$d^2 = 120^2 + 50^2$$

$$\Rightarrow d = 130 \text{ m}$$

Using the Sine Rule:

$$\frac{t}{\sin A} = \frac{2t}{\sin B} \quad ... \text{ but } \sin A = \frac{5}{13}$$
$$\Rightarrow \frac{13}{5} = \frac{2}{\sin B}$$

$$\Rightarrow \sin B = \frac{10}{13}$$

$$\Rightarrow B = 50.28^{\circ}$$
 OR $B = 129.72^{\circ}$

Case 1:
$$B = 50.28^{\circ}$$

$$C = 180^{\circ} - 50.28^{\circ} - 22.62^{\circ}$$

$$\Rightarrow C = 107.1^{\circ}$$

 \Rightarrow 72.9° to the downstream direction

Case 2:
$$B = 129.72^{\circ}$$

 $C = 180^{\circ} - 129.72^{\circ} - 22.62^{\circ}$
 $\Rightarrow C = 27.66^{\circ}$
 $\Rightarrow 27.66^{\circ}$ to the upstream direction.

Using the Sine rule:

$$\frac{t}{\sin A} = \frac{d}{\sin C}$$

$$\Rightarrow \frac{13t}{5} = \frac{130}{\sin 107.1^{\circ}}$$

$$\Rightarrow t = \frac{50}{\sin 107.1^{\circ}} = 52 \text{ s}$$

$$\Rightarrow \frac{13t}{5} = \frac{130}{\sin 27.66^{\circ}}$$

$$\Rightarrow t = \frac{50}{\sin 27.66^{\circ}} = 108 \text{ s}$$

Q. 3. (i)
$$\overrightarrow{v_R} = q\overrightarrow{i}$$

$$\overrightarrow{v_{CR}} = p\overrightarrow{j} \quad ... \text{ tries to go straight across.}$$

$$\overrightarrow{v_G} = \overrightarrow{v_{CR}} + \overrightarrow{v_R}$$

$$= q\overrightarrow{i} + p\overrightarrow{j}$$

Time across =
$$\frac{\text{distance across}}{\text{speed across}}$$

= $\frac{60}{p}$
 $\Rightarrow \frac{60}{p} = 100 \Rightarrow p = 0.6$

distance downstream = speed downstream \times time = $q \times 100$ = 100q

$$\Rightarrow 100q = 45 \Rightarrow q = 0.45$$

(ii) Let t = the time taken to cross the river.
 The girl will head upstream at 0.6 m/s, and would travel a distance 0.6t
 Meanwhile the river carries her downstream a distance 0.45t.
 She lands 45 m upstream.

$$d^2 = 45^2 + 60^2 \Rightarrow d = 75 \text{ m}$$

$$\tan D = \frac{60}{45} = \frac{4}{3}$$

$$\Rightarrow D = 53.13^{\circ}$$

$$\Rightarrow E = 126.87^{\circ}$$

Using the Sine Rule:

$$\frac{0.6t}{\sin 126.87^{\circ}} = \frac{0.45t}{\sin B}$$

$$\Rightarrow \sin B = \frac{0.45 \sin 126.87^{\circ}}{0.6}$$

$$\Rightarrow B = 36.87^{\circ}$$
 OR $B = 143.13^{\circ}$

Case 1:
$$B = 36.87^{\circ}$$

$$A = 180^{\circ} - 36.87^{\circ} - 126.87^{\circ}$$

$$\Rightarrow A = 16.26^{\circ}$$

Using the Sine Rule:

$$\frac{75}{\sin 16.26} = \frac{0.6t}{\sin 126.87^{\circ}}$$
$$\Rightarrow t = 357 \text{ s}$$

Case 2:
$$B = 143.13$$

$$A = 180^{\circ} - 143.13^{\circ} - 126.87^{\circ}$$

$$\Rightarrow A = -90^{\circ}$$
 ... not possible

Q. 4.

$$\frac{20t}{\sin 95^{\circ}} = \frac{5t}{\sin A}$$

$$\therefore$$
 20 sin $A = 5 \sin 95^{\circ}$

$$A = 14.42^{\circ}$$
 OR 165.578°

$$B = 180^{\circ} - 95^{\circ} - 14.42^{\circ} = 70.58^{\circ}$$

:. Speedboat must travel $(45 + 14.42) = 59.42^{\circ}$ North of West

$$\frac{5,000}{\sin 70.58^{\circ}} = \frac{20 t}{\sin 95^{\circ}}$$

$$\therefore t = \frac{250 \sin 95^{\circ}}{\sin 70.58^{\circ}} = 264 \text{ s}$$

Q. 5. (i) Let t = the time taken to cross the river.

The boat will head upstream at 3.2 m/s, and would travel a distance 3.2t.

Meanwhile the river carries the boat downstream a distance 3.6t.

The boat lands 25 m downstream.

$$\tan A = \frac{45}{25} = \frac{9}{5}$$

$$\Rightarrow A = 60.945^{\circ}$$

$$d^2 = 25^2 + 45^2$$

$$\Rightarrow d = 51.478 \text{ m}$$

Using the Sine Rule:

$$\frac{3.2t}{\sin 60.945} = \frac{3.6t}{\sin B}$$
$$\Rightarrow B = \sin^{-1} \left[\frac{3.6 \sin 60.945^{\circ}}{3.2} \right]$$

$$\Rightarrow B = 79.553^{\circ}$$
 OR $B = 100.447^{\circ}$

(ii) Case 1:
$$B = 79.553^{\circ}$$

$$C = 180^{\circ} - 79.553^{\circ} - 60.945^{\circ}$$

$$\Rightarrow C = 39.502^{\circ}$$

Case 2:
$$B = 100.447^{\circ}$$

$$C = 180^{\circ} - 100.447^{\circ} - 60.945^{\circ}$$

$$\Rightarrow C = 18.608^{\circ}$$

Using the Sine rule:

$$\frac{3.2t}{\sin 60.945^{\circ}} = \frac{51.478}{\sin 39.502^{\circ}}$$

$$\Rightarrow t = \frac{51.478 \sin 60.945^{\circ}}{3.2 \sin 39.502^{\circ}}$$

$$\Rightarrow t = 22 \text{ s}$$

$$\frac{3.2t}{\sin 60.945^{\circ}} = \frac{51.478}{\sin 18.608^{\circ}}$$

$$\Rightarrow t = \frac{51.478 \sin 60.945^{\circ}}{3.2 \sin 18.608^{\circ}}$$

$$\Rightarrow t = 44 \text{ s}$$